本研究评估了信息和通信技术 (ICT) 在阿散蒂地区图书馆的图书馆服务交付中的整合情况。具体而言,它试图评估图书馆中可用的 ICT 基础设施,评估图书馆采用 ICT 工具的程度,检查员工和用户的 ICT 技能水平,确定使用 ICT 基础设施的挑战,并提出改进图书馆 ICT 的措施。采用调查研究设计,通过问卷调查收集了 66 名图书馆用户/顾客和 25 名图书馆工作人员的答复。调查结果表明,ICT 采用程度适中,表明需要对 ICT 服务进行更多投资,以支持阿散蒂地区图书馆的图书馆服务交付。该研究还揭示了不同 ICT 设施的存在,包括计算机、打印机、复印机和互联网连接。扫描仪、投影仪、电视等其他关键 ICT 工具的缺乏表明可能需要改进或投资。互联网连接速度慢、电源不稳定、ICT 设施成本高、专业知识不足和设备不足等挑战仍然存在。研究得出的结论是,确保资金升级和扩展 ICT 基础设施、为员工和用户提供持续培训、促进协作和伙伴关系、确保可靠的电力供应以及实施 ICT 管理政策将大大改善图书馆服务交付。
摘要:随着X射线源、聚焦光学系统和X射线探测器的发展,微束X射线散射技术已经成熟并广泛应用于聚合物材料的表征。微束X射线散射是一种独特而强大的工具,它可以提供有关局部结构的丰富信息,例如材料的空间不均匀性和局部位置的结构变化。此外,通过结合微束小角X射线散射(SAXS)和广角X射线散射(WAXS),可观测的空间尺度范围从几个到几百个A˚,这是聚合物分级结构分析中最重要的尺度范围。本文介绍了微束X射线散射在聚合物结晶、空间不均匀性分析、外场下的应力传递和嵌段共聚物体系中的微相分离结构分析中的代表性应用。 [doi:10.1295/polymj.PJ2007077] 关键词 微束小角和广角X射线散射/聚合物表征/
摘要:在许多情况下,氢气有望在全球能源转型中发挥关键作用,实现净零排放。然而,氢气在生产、储存、分配和使用过程中向大气中的逸散排放可能会降低其对气候的益处,并对空气质量产生影响。在这里,我们使用英国地球系统模型 (UKESM1) 化学-气候模型探索大气成分和大气氢丰度增加对气候的影响。氢气的增加导致甲烷、对流层臭氧和平流层水蒸气的增加,从而产生正辐射强迫。然而,氢气泄漏的一些影响被化石燃料消耗带来的甲烷、一氧化碳、氮氧化物和挥发性有机化合物排放的潜在减少部分抵消。我们从稳态模拟得出的参数中推导出一种确定间接全球变暖潜能值 (GWP) 的改进方法,该方法既适用于寿命较短的物种,也适用于寿命中等和较长的物种,例如氢气。使用这种方法,我们确定了氢气 100 年的全球变暖潜能值为 12 ± 6。基于这一 GWP 和 1% 和 10% 的氢气泄漏率,我们发现氢气泄漏分别抵消了我们全球氢经济情景中二氧化碳总排放量约 0.4% 和 4%。为了最大限度地发挥氢气作为能源的优势,需要将与氢气泄漏相关的排放和臭氧前体气体的排放降至最低。
我们引入了一个新的量子 R'enyi 散度 D # α,其中 α ∈ (1 , ∞ ) 以凸优化程序定义。此散度具有多种理想的计算和操作特性,例如状态和通道的高效半正定规划表示,以及链式法则特性。这种新散度的一个重要特性是它的正则化等于夹层(也称为最小)量子 R'enyi 散度。这使我们能够证明几个结果。首先,我们使用它来获得当 α > 1 时量子通道之间正则化夹层 α -R'enyi 散度的上界的收敛层次。其次,它使我们能够证明当 α > 1 时夹层 α -R'enyi 散度的链式法则特性,我们用它来表征通道鉴别的强逆指数。最后,它使我们能够获得量子通道容量的改进界限。
摘要 散发性克雅氏病 (sCJD) 是一种传染性脑蛋白病。目前主要有五种临床病理亚型 (sCJD-MM(V)1、-MM(V)2C、-MV2K、-VV1 和 -VV2)。组织病理学证据表明,朊病毒聚集体和海绵状病变的定位因亚型而异。确定是否存在可检测成像异常的初始部位(震中)以及病变扩散的顺序将有助于疾病的早期诊断、患者分期、管理和临床试验招募。扩散磁共振成像 (MRI) 是检测海绵状变性最常用和最敏感的测试。本研究旨在使用弥散加权图像 (DWI) 在已知最大的经尸检证实的 sCJD 患者横断面数据集中首次在体内识别脑内亚型依赖性震中和病变传播。我们使用基于事件的建模(一种成熟的数据驱动技术)通过横断面 DWI 估计病变传播。1 名不知诊断的神经放射科医生对 594 名经尸检诊断的受试者(448 名 sCJD 患者)的 12 个大脑区域的 DWI 异常进行评分。我们使用基于事件的模型重建了五种纯亚型中病变传播的顺序。151 名患者的随访数据验证了估计的序列。结果表明,病变传播的中心和顺序是亚型特异性的。两种最常见的亚型(-MM1 和 -VV2)显示出相反的 DWI 异常出现顺序:分别从新皮质到皮质下区域,反之亦然。楔前叶也是 -MM2 和 -VV1 中最有可能的中心,尽管与 -MM1 不同,在扣带回和岛叶皮质中也检测到了早期异常信号。-MV2K 中复制了表征 -VV2 的病变传播尾部-喙部序列。这些数据驱动模型结合起来,提供了前所未有的动态洞察,可以洞察病理过程开始和传播时亚型特异性中心,这也可能增强早期诊断并实现 sCJD 的疾病分期。
共振非弹性X射线散射(RIX)是一种广泛使用的光谱技术,可提供对原子,分子和固体的电子结构和动力学的访问。但是,RIX需要一个狭窄的带宽X射线探针才能达到高光谱分辨率。从X射线游离电子激光器(XFEL)传递能量单色光束(XFEL)的挑战限制了其在几次实验中的使用,包括用于研究高能量密度系统。在这里,我们证明,通过将XFEL自发自发发射(SASE)的测量与RIX信号相关联,使用神经代理的动态内核反卷入率,我们可以实现比起X-Ray bardeming x-ray barde-bardwidth bander-band banders off band barde the bard bands faster of the Electonic结构的分辨率。我们进一步展示了该技术如何允许我们区分Fe和Fe 2 O 3的价结构,并提供了对温度测量值以及温度温度化合物中的M壳结合能的估计值。
自 1993 年 Shuji Nakamura 制成第一只 GaN 基蓝光发光二极管 (LED) 以来 [1],基于 III 族氮化物材料的 LED 发展迅速并得到了广泛的应用。然而,导致绿光 LED 效率低下的“绿光隙”一直未能得到解决,而蓝光和红光 LED 却实现了较高的发光效率 [2,3]。造成上述问题的原因之一是 InxGa1-xN/GaN 多量子阱 (MQW) 中铟组分的增加,而这是为了使 InGaN 基 LED 能够发出更长的波长的光。由于 InGaN 与 GaN 之间的晶格常数和热膨胀系数不匹配 [4,5],以及 InN 在 GaN 中的低混溶性 [6],高铟组分 InGaN QW 的绿光 LED 会遭受晶体质量劣化。同时,还会产生大量的位错,它们充当非辐射复合中心[7],对发光是不利的。另一方面,有源区产生的光很难从高折射率半导体(n GaN = 2.5)逸出到空气中(n air = 1)。内部光的临界角(θ c )或逸出锥仅为~23.6°[θ c = sin −1(n air /n GaN )],超过此角度发射的光子会发生全内反射,因此只有一小部分光可以逸出到周围的空气中[8]。绿光是三原色之一,提高绿光LED的发光效率是实现高效率、高亮度RGB(红、绿、蓝)LED的关键。
过程张量是量子梳,描述开放量子系统通过多个量子动力学步骤的演化。虽然有多种方法可以测量两个过程的差异,但必须特别注意确保量词遵循物理上可取的条件,例如数据处理不等式。在这里,我们分析了量子梳一般应用中常用的两类可区分性度量。我们表明,第一类称为 Choi 散度,不满足重要的数据处理不等式,而第二类称为广义散度,满足。我们还将量子信道广义散度的一些其他相关结果扩展到量子梳。最后,鉴于我们证明的性质,我们认为广义散度可能比 Choi 散度更适合在大多数应用中区分量子梳。特别是,这对于定义具有梳状结构的资源理论的单调性至关重要,例如量子过程的资源理论和量子策略的资源理论。
摘要。这篇短文旨在研究 Bhatia 等人最近研究的量子 Hellinger 距离。[8] 特别强调了重心。我们引入了广义量子 Hellinger 散度族,其形式为 φ ( A , B ) = Tr((1 − c ) A + cB − A σ B ),其中 σ 是任意的 Kubo-Ando 均值,c ∈ (0,1) 是 σ 的权重。我们注意到这些散度属于最大量子 f 散度族,因此是联合凸的,并满足数据处理不等式 (DPI)。我们推导出这些广义量子 Hellinger 散度的有限多个正定算子的重心特征。我们注意到,[8] 中声称,重心作为加权多元 1/2 幂均值的特征,在交换算子的情况下是正确的,但在一般情况下并不正确。