摘要 - 一种足够强的模态逻辑,以完全表征系统的行为称为表达性。最近,随着(概率,网络物理等)的推理,系统的多样性越来越多。),重点转移到定量设置,从而为定量逻辑和行为指标带来了许多表达性结果。这些定量的表达性结果中的每一个都使用量身定制的论点;提炼这些论点的本质是非平凡的,但对于支持新的定量设置的表达模态逻辑的设计很重要。在本文中,我们介绍了基于近似家庭的新概念来得出定量表达结果的第一个分类框架。一个关键的成分是鳕鱼的提升,这是一种均匀的观察以各种双性异性的构造 - 类似于双性模拟指标的概念。我们表明,最近有几个定量表达性结果(例如Kénig等人。和Fijalkow等人)被容纳在我们的框架中;对于我们所谓的一分化均匀性,也得出了新的表达结果。
表现出布尔行为的基因调节网络,例如和或或XOR经常设计多年。但是,实现更复杂的功能,例如控制或计算,通常需要顺序的电路或所谓的状态机。对于这样的电路,输出既取决于输入和系统的当前状态。尽管仍然可以通过类比与数字电子产品进行类比设计此类电路,但生物学的某些特殊性使任务更加棘手。在本文中评估了其中两个的影响,即生物过程的随机性和调节机制响应中的不均匀性。数值仿真指出,即使是从理论的角度来看,即使设计GRNS功能的高风险也是如此。还讨论了提高此类系统可靠性的几种解决方案。
摘要该论文介绍了为智能系统模拟模糊逻辑控制器的结果,以监视和管理室内微气候条件。在编程中使用模糊逻辑提供了某些优点,例如对控制系统的数据输入简单性以及减少经典微控制器固有的错误的能力。使用的微处理器系统基于Arduino Uno板型号Arduino Rev3,该型号具有Atmel Atmega328p微控制器,并且紧凑,成本效益且易于使用。在系统中使用模糊逻辑控制器进行有效的微气候调节。在智能系统的开发过程中,采用了LabView软件环境和Arduino IDE。研究将系统分解为几个组件,并在它们之间建立联系以提高软件的效率。决策 - 由系统的功能要求和用于实施的设备确定。
UDC 621.3 https://doi.org/10.20998/2074-272X.2022.3.07 M. Ali Moussa、A. Derrouazin、M. Latroch、M. Aillerie 使用基于模糊逻辑的智能控制器的混合可再生能源生产系统简介。本文提出了一种改进的能源管理和优化系统,该系统采用基于模糊逻辑技术的智能经济策略,具有多个输入和输出 (I/O)。它用于控制由光伏太阳能电池板、风力涡轮机和电网辅助的电能存储系统构建的混合电能源。这项工作的新颖之处在于,太阳能光伏、风力涡轮机和存储系统能源优先于电网,仅在恶劣天气条件下才会征用,以便为每天使用高达 4,000 Wh 的典型家庭供电。此外,在有利气候条件下产生的剩余可再生能源可用于电解系统生产氢气,适用于家庭取暖和烹饪。目的。开发基于模糊逻辑技术的智能经济策略的改进能源管理和优化系统。该系统嵌入在 Arduino 2560 mega 微控制器上,在该微控制器上,模糊逻辑的基本程序和所有可能场景的事件分配已根据流程图实现,从而允许管理混合系统。为了应用所提出的技术来确保家庭的连续住宿,我们进行了方法以及参数搜索和模拟以表征系统。结果。所提出的系统结果通过可视化电子开关的输出控制信号证实了其有效性。其实际值通过单相 DC/AC 转换器传输电力,为住宿的 AC 负载供电。参考文献 20,图 9。关键词:混合能源系统、可再生能源、电池存储、模糊逻辑、智能管理。Вступ。 У статі пропонується вдосконалена система керування та оптимізації енергоспоживання з інтелектуальною економічною стратегією,заснованою на методі нечіткої логіки з декількома входами та виходами。 Вона використовується для керування гібридними джерелами електричної енергії, побудованими на основі фотоелектричних сонячних панелей, вітрових турбін та системи зберігання електричної енергії за допомогою електричної мережі。 Новизна роботи полягає в тому, що сонячні фотоелектричні, вітряні турбіни та джерела енергії системи зберігання енергії мають пріоритет над електромережею, яка запитується лише за несприятливих погодних умов, щоб забезпечувати типове几天后,4000 Вт год на день。 Крім того、надлишки відновлюваної енергії、що виробляється у сприятливих кліматичних умовах, використовуються для виробництва водню, придатного для опалення та приготування їжі за допомогою електролізера.梅塔。开发基于模糊逻辑方法的智能经济策略的先进能源消耗管理和优化系统。该系统内置于Arduino 2560超级微控制器,它根据流程图实现模糊逻辑和事件分配的主程序以及所有可能的情况,让您可以控制混合系统。为了应用所提出的方法来确保房屋的持续居住,实施了指定的方法以及系统特性的参数搜索和建模。结果。所提系统的实施结果通过可视化电子开关的输出控制信号证实了其有效性。其实际意义在于通过单相直流-交流转换器传输电能,为住宅场所的交流负载供电。圣经。 20,图。 9. 关键词:混合能源系统、可再生能源、电池、模糊逻辑、智能控制。介绍。为了避免电力生产中的污染问题,替代解决方案可以是光伏 (PV)、风能甚至水力发电。此外,配电网络不足以向全世界人口供电:无论是在山区还是在岛屿上,在人迹罕至的地区还是在沙漠中部,由于缺乏技术解决方案或经济可行性,难以进入或非常偏远的地点无法总是连接到电网。然而,由于可再生能源能够适应家庭使用,因此特别适合生产称为孤立站点或微电网的电力。它们通常与电池相连,以确保在生产过剩时储存能量,或弥补高峰消费期间的短暂电力短缺[1-5]。混合能源系统 (HES) 结合了多种来源,例如可再生能源系统 (RES)、国家配电网络(历史网络)、传统能源和存储系统,通常被认为是未来的高效可靠解决方案,已经对单一来源的可再生能源进行了许多分析(规划和规模),主要目的是确定高效和安全运行的最佳系统配置。所提系统的实施结果通过可视化电子开关的输出控制信号证实了其有效性。其实际意义在于通过单相直流-交流转换器传输电能,为住宅场所的交流负载供电。圣经。 20,图。 9. 关键词:混合能源系统、可再生能源、电池、模糊逻辑、智能控制。介绍。为了避免电力生产中的污染问题,替代解决方案可以是光伏 (PV)、风能甚至水力发电。此外,配电网络不足以向全世界人口供电:无论是在山区还是在岛屿上,在人迹罕至的地区还是在沙漠中部,由于缺乏技术解决方案或经济可行性,难以进入或非常偏远的地点无法总是连接到电网。然而,由于可再生能源能够适应家庭使用,因此特别适合生产称为孤立站点或微电网的电力。它们通常与电池相连,以确保在生产过剩时储存能量,或弥补高峰消费期间的短暂电力短缺[1-5]。混合能源系统 (HES) 结合了多种来源,例如可再生能源系统 (RES)、国家配电网络(历史网络)、传统能源和存储系统,通常被认为是未来的高效可靠解决方案,已经对单一来源的可再生能源进行了许多分析(规划和规模),主要目的是确定高效和安全运行的最佳系统配置。所提系统的实施结果通过可视化电子开关的输出控制信号证实了其有效性。其实际意义在于通过单相直流-交流转换器传输电能,为住宅场所的交流负载供电。圣经。 20,图。 9. 关键词:混合能源系统、可再生能源、电池、模糊逻辑、智能控制。介绍。为了避免电力生产中的污染问题,替代解决方案可以是光伏 (PV)、风能甚至水力发电。此外,配电网络不足以向全世界人口供电:无论是在山区还是在岛屿上,在人迹罕至的地区还是在沙漠中部,由于缺乏技术解决方案或经济可行性,难以进入或非常偏远的地点无法总是连接到电网。然而,由于可再生能源能够适应家庭使用,因此特别适合生产称为孤立站点或微电网的电力。它们通常与电池相连,以确保在生产过剩时储存能量,或弥补高峰消费期间的短暂电力短缺[1-5]。混合能源系统 (HES) 结合了多种来源,例如可再生能源系统 (RES)、国家配电网络(历史网络)、传统能源和存储系统,通常被认为是未来的高效可靠解决方案,已经对单一来源的可再生能源进行了许多分析(规划和规模),主要目的是确定高效和安全运行的最佳系统配置。可再生能源特别适合用于发电,即所谓的孤立站点或微电网。它们通常与电池相连,以确保在生产过剩时储存能源,或弥补高峰消费期间的短暂电力短缺 [1-5]。混合能源系统 (HES) 结合了多种能源,例如可再生能源系统 (RES)、国家配电网 (历史网络)、传统能源和存储系统,通常被认为是未来的解决方案,它高效可靠,已经对单一来源的可再生能源进行了许多分析 (规划和规模),主要目的是确定最佳系统配置以实现高效和安全的运行。可再生能源特别适合用于发电,即所谓的孤立站点或微电网。它们通常与电池相连,以确保在生产过剩时储存能源,或弥补高峰消费期间的短暂电力短缺 [1-5]。混合能源系统 (HES) 结合了多种能源,例如可再生能源系统 (RES)、国家配电网 (历史网络)、传统能源和存储系统,通常被认为是未来的解决方案,它高效可靠,已经对单一来源的可再生能源进行了许多分析 (规划和规模),主要目的是确定最佳系统配置以实现高效和安全的运行。
摘要 糖尿病肾病是三分之一糖尿病患者的并发症。糖尿病中异常的葡萄糖代谢会导致肾小球组织的结构和功能损伤以及全身炎症免疫反应。复杂的细胞信号传导是代谢和功能紊乱的核心。不幸的是,炎症在糖尿病肾病期间肾小球内皮细胞功能障碍中的作用机制尚未完全了解。系统生物学中的数学模型允许整合实验证据和细胞信号网络来了解疾病进展所涉及的机制。本研究开发了一个基于逻辑的普通微分方程模型,使用葡萄糖和脂多糖刺激的蛋白质信号网络来研究糖尿病肾病进展过程中巨噬细胞和肾小球内皮细胞之间的炎症串扰。这种建模方法减少了研究信号网络所需的生物参数。该模型已根据体外实验中可用的生化数据进行拟合和验证。该模型确定了糖尿病肾病期间巨噬细胞和肾小球内皮细胞中信号失调的机制。此外,还研究了通过选择性敲低和下调信号相互作用对肾小球内皮细胞形态的影响。模拟结果表明,VEGF受体1、PLC-γ、黏附连接蛋白和钙的部分敲低可部分恢复肾小球内皮细胞之间的细胞间隙宽度。这些发现有助于理解影响糖尿病肾病早期肾小球内皮细胞的信号和分子扰动。
亚特兰大埃默里大学罗林斯公共卫生学院环境卫生部的加加罗萨;伦敦卫生与热带医学学院公共卫生,环境与社会部的B环境与健康建模(EHM)实验室,英国伦敦; C统计,计算机科学和应用部“ G。父母,”意大利佛罗伦萨佛罗伦萨大学;马萨诸塞州波士顿哈佛大学公共卫生学院; E瑞士伯尔尼大学社会与预防医学研究所;瑞士伯尔尼大学气候变化研究中心; G气候研究基金会(FIC),西班牙马德里;西班牙马德里的H ciber deepidemiologíay saludpública(Ciberesp);我是西班牙巴塞罗那西班牙科学研究理事会环境评估与水研究所;马萨诸塞州波士顿哈佛大学公共卫生学院; E瑞士伯尔尼大学社会与预防医学研究所;瑞士伯尔尼大学气候变化研究中心; G气候研究基金会(FIC),西班牙马德里;西班牙马德里的H ciber deepidemiologíay saludpública(Ciberesp);我是西班牙巴塞罗那西班牙科学研究理事会环境评估与水研究所;
摘要。本研究提出了一种基于模糊逻辑的新型能源管理模型,旨在优化可再生能源与智能电网的结合。该研究使用模拟数据来评估该模型在重要指标方面的表现,结果显示可再生能源消耗、电网稳定性、能源存储可靠性和系统整体效率均有显著改善。模糊逻辑控制器根据当前输入调整能源分配,使可再生能源使用率显著提高 20%。适应能力对于应对太阳能、风能和生物质能固有波动至关重要。该方法大大提高了电网稳定性,电网频率变化减少了 15%,凸显了其在确保更规范、更稳定的电力供应方面的有效性。此外,能源存储系统的可靠性在充电状态下显著提高了 25%,表明充电和放电循环最佳。这种可靠性的提高增强了电力系统在高需求和变化时期的能源供应稳定性。与传统管理系统相比,基于模糊逻辑的能源管理模型使整个系统效率显著提高 22%。该指标涵盖了该模型对可再生能源使用、电网稳定性和储能优化的综合影响。与传统控制策略(如比例积分微分控制器)进行的比较分析一致证明了模糊逻辑方法的优越性。这种方法使电网频率偏差减少 10%,储能充电状态提高 15%,整个系统效率提高 12%。敏感性分析突出了模糊逻辑控制器的弹性,因为即使参数变化很大,它也能表现出一致的性能。通过使用验证,进一步证实了该模型的实际实用性和对道德原则的遵守
摘要。本研究提出了一种基于模糊逻辑的新型能源管理模型,旨在优化可再生能源与智能电网的结合。该研究使用模拟数据来评估该模型在重要指标方面的表现,揭示了可再生能源消耗、电网稳定性、能源存储可靠性和系统整体效率的显著改善。模糊逻辑控制器根据当前输入调整能源分配,使可再生能源的使用率显著提高 20%。适应能力对于应对太阳能、风能和生物质能固有的波动至关重要。该方法大大提高了电网稳定性,电网频率变化减少了 15%,凸显了其在确保更规范、更稳定的电力供应方面的有效性。此外,能源存储系统的可靠性在充电状态下表现出显著的 25% 的增强,表明充电和放电的循环是最佳的。这种可靠性的提高提高了电力系统在高需求和变化时期的能源供应稳定性。与传统管理系统相比,基于模糊逻辑的能源管理模型使整个系统效率显著提高 22%。该指标涵盖了该模型对能源使用情况的综合影响
摘要 我们扩展了 Deutsch 使用四个正交状态确定逻辑函数映射的算法。利用此算法,我们提出使用十六个正交状态对逻辑函数变量值的所有组合进行并行计算。作为我们算法的一个应用,我们演示了二进制系统中两种典型的算术计算。我们研究了通过量子门控计算操作全加器/半加器的效率。两种典型的算术计算是(1 + 1)和(2 + 3)。典型的算术计算(2 + 3)比其经典装置更快,当我们引入全加器操作时,经典装置需要 4 3 = 64 个步骤。另一个典型的算术计算(1 + 1)比其经典装置更快,当我们仅引入半加器操作时,经典装置需要 4 2 = 16 个步骤。
摘要。本研究探讨了在智能电网中使用模糊逻辑创建和执行能源管理方法,目的是有效地整合可再生能源。该研究采用了经验数据,包括可再生能源生产信息、能源使用变化、电池存储的当前状态以及采取的控制措施。数据分析表明,可再生能源存在显著差异,即太阳能从 350 千瓦到 410 千瓦,风能从 180 千瓦到 220 千瓦,水能从 120 千瓦到 150 千瓦。不同部门的能源消耗呈现出不同的模式。住宅消费从 250 千瓦到 275 千瓦,工业需求从 300 千瓦增加到 330 千瓦,商业消费从 200 千瓦波动到 225 千瓦。电池存储状态出现变化,电池1从150 kWh增加到165 kWh,电池2在180 kWh和195 kWh之间波动,电池3维持在200 kWh至215 kWh的稳定范围内。基于模糊逻辑的控制动作的使用展示了灵活性,其中控制动作1的范围从0.6到0.8,控制动作2在0.5到0.7之间波动,控制动作3在0.6到0.9之间变化。该研究强调了基于模糊逻辑的能源管理系统的灵活性和快速响应。它可以实时调整控制动作以适应可再生能源发电、消费模式和电池存储的变化。这表明它有潜力优化能源流动并确保智能电网中的电网稳定性,促进可再生能源的有效整合。