摘要。本研究探讨了在智能电网中使用模糊逻辑创建和执行能源管理方法,目的是有效地整合可再生能源。该研究采用了经验数据,包括可再生能源生产信息、能源使用变化、电池存储的当前状态以及采取的控制措施。数据分析表明,可再生能源存在显著差异,即太阳能从 350 千瓦到 410 千瓦,风能从 180 千瓦到 220 千瓦,水能从 120 千瓦到 150 千瓦。不同部门的能源消耗呈现出不同的模式。住宅消费从 250 千瓦到 275 千瓦,工业需求从 300 千瓦增加到 330 千瓦,商业消费从 200 千瓦波动到 225 千瓦。电池存储状态出现变化,电池1从150 kWh增加到165 kWh,电池2在180 kWh和195 kWh之间波动,电池3维持在200 kWh至215 kWh的稳定范围内。基于模糊逻辑的控制动作的使用展示了灵活性,其中控制动作1的范围从0.6到0.8,控制动作2在0.5到0.7之间波动,控制动作3在0.6到0.9之间变化。该研究强调了基于模糊逻辑的能源管理系统的灵活性和快速响应。它可以实时调整控制动作以适应可再生能源发电、消费模式和电池存储的变化。这表明它有潜力优化能源流动并确保智能电网中的电网稳定性,促进可再生能源的有效整合。
UDC 621.3 https://doi.org/10.20998/2074-272X.2022.3.07 M. Ali Moussa、A. Derrouazin、M. Latroch、M. Aillerie 使用基于模糊逻辑的智能控制器的混合可再生能源生产系统简介。本文提出了一种改进的能源管理和优化系统,该系统采用基于模糊逻辑技术的智能经济策略,具有多个输入和输出 (I/O)。它用于控制由光伏太阳能电池板、风力涡轮机和电网辅助的电能存储系统构建的混合电能源。这项工作的新颖之处在于,太阳能光伏、风力涡轮机和存储系统能源优先于电网,仅在恶劣天气条件下才会征用,以便为每天使用高达 4,000 Wh 的典型家庭供电。此外,在有利气候条件下产生的剩余可再生能源可用于电解系统生产氢气,适用于家庭取暖和烹饪。目的。开发基于模糊逻辑技术的智能经济策略的改进能源管理和优化系统。该系统嵌入在 Arduino 2560 mega 微控制器上,在该微控制器上,模糊逻辑的基本程序和所有可能场景的事件分配已根据流程图实现,从而允许管理混合系统。为了应用所提出的技术来确保家庭的连续住宿,我们进行了方法以及参数搜索和模拟以表征系统。结果。所提出的系统结果通过可视化电子开关的输出控制信号证实了其有效性。其实际值通过单相 DC/AC 转换器传输电力,为住宿的 AC 负载供电。参考文献 20,图 9。关键词:混合能源系统、可再生能源、电池存储、模糊逻辑、智能管理。Вступ。 У статі пропонується вдосконалена система керування та оптимізації енергоспоживання з інтелектуальною економічною стратегією,заснованою на методі нечіткої логіки з декількома входами та виходами。 Вона використовується для керування гібридними джерелами електричної енергії, побудованими на основі фотоелектричних сонячних панелей, вітрових турбін та системи зберігання електричної енергії за допомогою електричної мережі。 Новизна роботи полягає в тому, що сонячні фотоелектричні, вітряні турбіни та джерела енергії системи зберігання енергії мають пріоритет над електромережею, яка запитується лише за несприятливих погодних умов, щоб забезпечувати типове几天后,4000 Вт год на день。 Крім того、надлишки відновлюваної енергії、що виробляється у сприятливих кліматичних умовах, використовуються для виробництва водню, придатного для опалення та приготування їжі за допомогою електролізера.梅塔。开发基于模糊逻辑方法的智能经济策略的先进能源消耗管理和优化系统。该系统内置于Arduino 2560超级微控制器,它根据流程图实现模糊逻辑和事件分配的主程序以及所有可能的情况,让您可以控制混合系统。为了应用所提出的方法来确保房屋的持续居住,实施了指定的方法以及系统特性的参数搜索和建模。结果。所提系统的实施结果通过可视化电子开关的输出控制信号证实了其有效性。其实际意义在于通过单相直流-交流转换器传输电能,为住宅场所的交流负载供电。圣经。 20,图。 9. 关键词:混合能源系统、可再生能源、电池、模糊逻辑、智能控制。介绍。为了避免电力生产中的污染问题,替代解决方案可以是光伏 (PV)、风能甚至水力发电。此外,配电网络不足以向全世界人口供电:无论是在山区还是在岛屿上,在人迹罕至的地区还是在沙漠中部,由于缺乏技术解决方案或经济可行性,难以进入或非常偏远的地点无法总是连接到电网。然而,由于可再生能源能够适应家庭使用,因此特别适合生产称为孤立站点或微电网的电力。它们通常与电池相连,以确保在生产过剩时储存能量,或弥补高峰消费期间的短暂电力短缺[1-5]。混合能源系统 (HES) 结合了多种来源,例如可再生能源系统 (RES)、国家配电网络(历史网络)、传统能源和存储系统,通常被认为是未来的高效可靠解决方案,已经对单一来源的可再生能源进行了许多分析(规划和规模),主要目的是确定高效和安全运行的最佳系统配置。所提系统的实施结果通过可视化电子开关的输出控制信号证实了其有效性。其实际意义在于通过单相直流-交流转换器传输电能,为住宅场所的交流负载供电。圣经。 20,图。 9. 关键词:混合能源系统、可再生能源、电池、模糊逻辑、智能控制。介绍。为了避免电力生产中的污染问题,替代解决方案可以是光伏 (PV)、风能甚至水力发电。此外,配电网络不足以向全世界人口供电:无论是在山区还是在岛屿上,在人迹罕至的地区还是在沙漠中部,由于缺乏技术解决方案或经济可行性,难以进入或非常偏远的地点无法总是连接到电网。然而,由于可再生能源能够适应家庭使用,因此特别适合生产称为孤立站点或微电网的电力。它们通常与电池相连,以确保在生产过剩时储存能量,或弥补高峰消费期间的短暂电力短缺[1-5]。混合能源系统 (HES) 结合了多种来源,例如可再生能源系统 (RES)、国家配电网络(历史网络)、传统能源和存储系统,通常被认为是未来的高效可靠解决方案,已经对单一来源的可再生能源进行了许多分析(规划和规模),主要目的是确定高效和安全运行的最佳系统配置。所提系统的实施结果通过可视化电子开关的输出控制信号证实了其有效性。其实际意义在于通过单相直流-交流转换器传输电能,为住宅场所的交流负载供电。圣经。 20,图。 9. 关键词:混合能源系统、可再生能源、电池、模糊逻辑、智能控制。介绍。为了避免电力生产中的污染问题,替代解决方案可以是光伏 (PV)、风能甚至水力发电。此外,配电网络不足以向全世界人口供电:无论是在山区还是在岛屿上,在人迹罕至的地区还是在沙漠中部,由于缺乏技术解决方案或经济可行性,难以进入或非常偏远的地点无法总是连接到电网。然而,由于可再生能源能够适应家庭使用,因此特别适合生产称为孤立站点或微电网的电力。它们通常与电池相连,以确保在生产过剩时储存能量,或弥补高峰消费期间的短暂电力短缺[1-5]。混合能源系统 (HES) 结合了多种来源,例如可再生能源系统 (RES)、国家配电网络(历史网络)、传统能源和存储系统,通常被认为是未来的高效可靠解决方案,已经对单一来源的可再生能源进行了许多分析(规划和规模),主要目的是确定高效和安全运行的最佳系统配置。可再生能源特别适合用于发电,即所谓的孤立站点或微电网。它们通常与电池相连,以确保在生产过剩时储存能源,或弥补高峰消费期间的短暂电力短缺 [1-5]。混合能源系统 (HES) 结合了多种能源,例如可再生能源系统 (RES)、国家配电网 (历史网络)、传统能源和存储系统,通常被认为是未来的解决方案,它高效可靠,已经对单一来源的可再生能源进行了许多分析 (规划和规模),主要目的是确定最佳系统配置以实现高效和安全的运行。可再生能源特别适合用于发电,即所谓的孤立站点或微电网。它们通常与电池相连,以确保在生产过剩时储存能源,或弥补高峰消费期间的短暂电力短缺 [1-5]。混合能源系统 (HES) 结合了多种能源,例如可再生能源系统 (RES)、国家配电网 (历史网络)、传统能源和存储系统,通常被认为是未来的解决方案,它高效可靠,已经对单一来源的可再生能源进行了许多分析 (规划和规模),主要目的是确定最佳系统配置以实现高效和安全的运行。
摘要该论文介绍了为智能系统模拟模糊逻辑控制器的结果,以监视和管理室内微气候条件。在编程中使用模糊逻辑提供了某些优点,例如对控制系统的数据输入简单性以及减少经典微控制器固有的错误的能力。使用的微处理器系统基于Arduino Uno板型号Arduino Rev3,该型号具有Atmel Atmega328p微控制器,并且紧凑,成本效益且易于使用。在系统中使用模糊逻辑控制器进行有效的微气候调节。在智能系统的开发过程中,采用了LabView软件环境和Arduino IDE。研究将系统分解为几个组件,并在它们之间建立联系以提高软件的效率。决策 - 由系统的功能要求和用于实施的设备确定。
(1) D. Evans,“物联网:互联网的下一次发展将如何改变一切”,(白皮书),https://www。cisco.com / c / dam / global / ru_ua / assets / pdf / iot-ibsg-0411final。pdf(访问日期 2020-01-04)。(2) G.E.Moore,“将更多组件塞入集成电路”,Proc.IEEE,卷。86,号。1,页。82-85,1998 年 1 月,电子学,卷。38,号。8,页。114-117,1965 年 4 月。(3) A. Chien 和 V. Karamcheti,“摩尔定律:第一个结束和一个新的开始”,计算机,卷。46,页。48-53,2013 年 12 月。( 4 ) T. Hanyu、T. Endoh、Y. Ando、S. Ikeda、S. Fukami、H. Sato、H. Koike、Y. Ma、D. Suzuki 和 H. Ohno,“自旋转移力矩磁阻随机存取存储器 (STT-MRAM) 技术”,载于《非易失性存储器和存储技术的发展》,B. Magyari-Kope 和 Y. Nishi 编辑,页。237-281,第 7 章,Woodhead Publishing 电子和光学材料系列,第 2 版,2019 年。( 5 ) 羽生貴弘,“MTJ / MOSハイブリッド回路技术 ”,応用物理 ,vol.86,no.8,pp.662-665,2017 年 8 月。( 6 ) T. Hanyu、T. Endoh、D. Suzuki、H. Koike、Y. Ma、N. Onizawa、M. Natsui、S. Ikeda 和 H. Ohno,“使用基于 MTJ 的 VLSI 计算的待机无电源集成电路”,Proc.IEEE,vol.104,
无人机或无人驾驶飞机通常被称为无人驾驶飞行器 (UAV),由这些无人机组成的自组织网络通常被称为飞行自组织网络 (FANET)。无人机和飞行自组织网络最初与军事监视和情报收集有关;此外,它们现在被广泛用于民用领域,包括搜索和救援、交通监控、消防、摄像和智能农业。然而,由于其独特的架构,它们带来了相当大的设计和部署挑战,主要与路由协议有关,因为传统的路由协议不能直接用于飞行自组织网络。例如,由于高移动性和稀疏拓扑,频繁的链路中断和路由维护会导致高开销和延迟。在本文中,我们采用基于优化模糊逻辑的生物启发式蚁群优化 (ACO) 算法“Ant-Hocnet”来改进飞行自组织网络的路由。模糊逻辑用于分析无线链路状态信息(例如可用带宽、节点移动性和链路质量),并在没有数学模型的情况下计算最佳无线链路。为了评估和比较我们的设计,我们在 MATLAB 模拟器中实现了它。结果表明,我们的方法提高了吞吐量和端到端延迟,从而提高了 FANET 的可靠性和效率。
无人机或无人驾驶飞机通常被称为无人驾驶飞行器 (UAV),由这些无人机组成的自组织网络通常被称为飞行自组织网络 (FANET)。无人机和飞行自组织网络最初与军事监视和情报收集有关;此外,它们现在被广泛用于民用领域,包括搜索和救援、交通监控、消防、摄像和智能农业。然而,由于其独特的架构,它们带来了相当大的设计和部署挑战,主要与路由协议有关,因为传统的路由协议不能直接用于飞行自组织网络。例如,由于高移动性和稀疏拓扑,频繁的链路中断和路由维护会导致高开销和延迟。在本文中,我们采用基于优化模糊逻辑的生物启发式蚁群优化 (ACO) 算法(称为“Ant-Hocnet”)来改进 FANET 中的路由。模糊逻辑用于分析有关无线链路状态的信息,例如可用带宽、节点移动性和链路质量,并在没有数学模型的情况下计算最佳无线链路。为了评估和比较我们的设计,我们在 MATLAB 模拟器中实现了它。结果表明,我们的方法可以提高吞吐量和端到端延迟,从而提高 FANET 的可靠性和效率。
摘要 糖尿病肾病是三分之一糖尿病患者的并发症。糖尿病中异常的葡萄糖代谢会导致肾小球组织的结构和功能损伤以及全身炎症免疫反应。复杂的细胞信号传导是代谢和功能紊乱的核心。不幸的是,炎症在糖尿病肾病期间肾小球内皮细胞功能障碍中的作用机制尚未完全了解。系统生物学中的数学模型允许整合实验证据和细胞信号网络来了解疾病进展所涉及的机制。本研究开发了一个基于逻辑的普通微分方程模型,使用葡萄糖和脂多糖刺激的蛋白质信号网络来研究糖尿病肾病进展过程中巨噬细胞和肾小球内皮细胞之间的炎症串扰。这种建模方法减少了研究信号网络所需的生物参数。该模型已根据体外实验中可用的生化数据进行拟合和验证。该模型确定了糖尿病肾病期间巨噬细胞和肾小球内皮细胞中信号失调的机制。此外,还研究了通过选择性敲低和下调信号相互作用对肾小球内皮细胞形态的影响。模拟结果表明,VEGF受体1、PLC-γ、黏附连接蛋白和钙的部分敲低可部分恢复肾小球内皮细胞之间的细胞间隙宽度。这些发现有助于理解影响糖尿病肾病早期肾小球内皮细胞的信号和分子扰动。
摘要 孤岛式农村微电网需要持续的资源监控。需求响应方案在管理负荷方面表现出色。然而,城市需求响应方案配备了市场价格和高峰时段惩罚来控制可延迟负荷。在农村微电网中,通常使用不属于可延迟负荷类别的常规负荷,例如风扇、灯和水泵。此外,随时使用常规负荷的完全自由、缺乏意识以及没有存储储备信息使得负荷管理任务更加复杂。在本研究中,为常规运行负荷设计了全自动两层需求响应方案。第一层控制是负荷模式控制。运行模式由电池的充电状态 (SoC) 决定。在第二层中,根据消费者的日常活动、SoC 和环境温度作为成员函数设计模糊控制器。结果根据消费者的舒适度和 SoC 的可用性进行评估。自动需求响应中的负载运行与实际常规运行保持一致,符合消费者的期望,偏差为 5% 至 7%。与相关研究相比,所有运行模式下的 SoC 水平均保持高 15%,重载运行高 13.5%。
基本工作步骤的顺序 将工作分解为几个步骤。工作的每个步骤都应完成一些主要任务。该任务将由一组动作组成。查看用于执行任务的第一组动作,然后确定下一组合乎逻辑的动作。例如,工作可能是将一个箱子从传送带上移开,并将其放在手推车上,这是一组合乎逻辑的动作,因此它是一个工作步骤。与该一组合乎逻辑的动作相关的所有内容都是该工作步骤的一部分。下一个合乎逻辑的动作可能是将装载了货物的手推车推到储藏室。将箱子从卡车上取下并放在架子上是另一组合乎逻辑的动作。最后,将手推车送回接收区可能是此类工作的最后一步。 确保列出工作中的所有步骤。有些步骤可能不是每次都要做——例如检查手推车上的脚轮。但是,该任务是整个工作的一部分,应该列出并进行分析。
高度发展。然而,众所周知,经典布尔逻辑在处理不确定性、等级真值或相似性等问题时是不够的,因此出现了其他更具表现力的逻辑,这些逻辑与人工智能更加相关。非经典逻辑作为解决许多人工智能挑战的方法而出现。事实上,正是在 20 世纪,逻辑中解决了模糊性、多义性和不确定性的形式化问题。这样,改变或删除经典逻辑的七个传统标准属性中的一些属性的想法导致了非经典逻辑的诞生。这些逻辑包括一大类不同的逻辑系统,例如模态逻辑、模糊逻辑、直觉逻辑或多值逻辑 [7、8、10 – 13、20、24、25、27、31]。在人工智能领域,我们通常区分出四种一般方法 [33]:基于逻辑的人工智能、非逻辑主义人工智能、智能代理连续体方法和异构人工智能方法。基于逻辑的人工智能是一种符号方法,由麦卡锡 [28] 于 1959 年具体发起,它基于使用逻辑将知识形式化并通过逻辑推理解决问题的一般思想。该方法涵盖的一些主要领域包括知识表示、信念理论、系统实现、非单调推理、溯因和归纳推理、常识推理和规划以及问题解决(有关基于逻辑的人工智能的一般讨论,请参阅 [29])。请注意,基于逻辑的人工智能是本特刊中处理的方法。多值逻辑应用的最突出领域是基于逻辑的人工智能。一些重要的应用领域包括数据和知识挖掘的自动化、模糊概念的形式化和常识推理。在文献中,在人工智能中使用多值逻辑的研究工作包括:Aksoy 和 Ercanoglu [ 1 ] 在滑坡识别和分类中使用多值逻辑;Moraga 等人[30] 回顾并讨论了用于模糊控制的多值逻辑;Falomir 等人[22] 使用描述逻辑来解释数字图像,通过每个对象的颜色和定性形状以及其主要空间特征(位置、相对方向和拓扑)来描述每个对象,这允许通过推理推断出新的对象类别(例如门);Corsi 和 Fermüller[14] 探讨了加权论证框架与基于 t 范数的逻辑之间的联系; Almubarak 等人 [ 2 ] 提出了一种基于模糊逻辑的颜色直方图分析方法,用于在皮肤镜图像中区分良性皮肤病变和恶性黑色素瘤;Badia 等人 [ 4 ] 和 Costa 和 Dellunde [ 15 ] 研究了模糊逻辑编程和计算机科学中相关概念的逻辑属性,16];Eklund 和Löfstrand[19]应用多值逻辑,旨在丰富制造业中关于产品和生产过程的信息结构及其表示的语言;Falomir 和Pich[32]提出了一种组成定性形状的逻辑方法,并将其应用于解决空间推理测试;Flaminio等人[23]分析了多值逻辑与不确定性决策理论之间的关系;Falomir等人[21]定义了将模糊颜色模型与概率参考和接地机制(PRAGR)相结合的逻辑,以便根据上下文获得对象最具辨别力的颜色描述符。最近,Dubois等人[18]发表了关于用于推理的多值逻辑的专刊。