无人机或无人驾驶飞机通常被称为无人驾驶飞行器 (UAV),由这些无人机组成的自组织网络通常被称为飞行自组织网络 (FANET)。无人机和飞行自组织网络最初与军事监视和情报收集有关;此外,它们现在被广泛用于民用领域,包括搜索和救援、交通监控、消防、摄像和智能农业。然而,由于其独特的架构,它们带来了相当大的设计和部署挑战,主要与路由协议有关,因为传统的路由协议不能直接用于飞行自组织网络。例如,由于高移动性和稀疏拓扑,频繁的链路中断和路由维护会导致高开销和延迟。在本文中,我们采用基于优化模糊逻辑的生物启发式蚁群优化 (ACO) 算法“Ant-Hocnet”来改进飞行自组织网络的路由。模糊逻辑用于分析无线链路状态信息(例如可用带宽、节点移动性和链路质量),并在没有数学模型的情况下计算最佳无线链路。为了评估和比较我们的设计,我们在 MATLAB 模拟器中实现了它。结果表明,我们的方法提高了吞吐量和端到端延迟,从而提高了 FANET 的可靠性和效率。
无人机或无人驾驶飞机通常被称为无人驾驶飞行器 (UAV),由这些无人机组成的自组织网络通常被称为飞行自组织网络 (FANET)。无人机和飞行自组织网络最初与军事监视和情报收集有关;此外,它们现在被广泛用于民用领域,包括搜索和救援、交通监控、消防、摄像和智能农业。然而,由于其独特的架构,它们带来了相当大的设计和部署挑战,主要与路由协议有关,因为传统的路由协议不能直接用于飞行自组织网络。例如,由于高移动性和稀疏拓扑,频繁的链路中断和路由维护会导致高开销和延迟。在本文中,我们采用基于优化模糊逻辑的生物启发式蚁群优化 (ACO) 算法(称为“Ant-Hocnet”)来改进 FANET 中的路由。模糊逻辑用于分析有关无线链路状态的信息,例如可用带宽、节点移动性和链路质量,并在没有数学模型的情况下计算最佳无线链路。为了评估和比较我们的设计,我们在 MATLAB 模拟器中实现了它。结果表明,我们的方法可以提高吞吐量和端到端延迟,从而提高 FANET 的可靠性和效率。
CL 中存在许多逻辑,例如命题逻辑、一阶逻辑 (FOL)、时间逻辑、道义逻辑等,每种逻辑都针对特定领域。例如,时间逻辑能够推理时间中的事件,道义逻辑支持推理许可/禁止及其情况,而 FOL 则是通用的。此外,不同的逻辑存在不同的推理规则。一些是演绎的——从前提中得出结论,一些是归纳的——从几个前提——结论示例中寻找一般规则,而另一些是溯因的——推测哪些前提导致了某些结论。最后,当某些推理规则存在解决策略时,它可以转换成某种软件结构,并用于为智能系统提供自动推理能力。这种软件通常被称为逻辑编程 (LP) 范式的一部分。
作为互补的金属氧化物半导体(CMOS)技术缩放达到了限制,正在探索新的计算记忆技术,例如“全旋转逻辑”(ASL)。初步预测表明,与CMO相比,用垂直磁各向异性实施的ASL将表现出功率 - 延迟产品(PDP)和Energy-delay产品(EDP),从而支持其候选者作为CMO的替代。在对ASL的最新评估中,已经使用了不切实际的参数,从而导致过于愉快的效率。本文使用具有现实参数的微磁模拟来分析各种设备参数和电路参数之间的关系,以及对PDP和EDP的影响。此分析表明,ASL的PDP和EDP极大地低于CMO,其技术参数当前可用。为了克服与能源效率有关的这些挑战,本文还评估了修改设备参数以提高能量效率的潜力。
摘要 - 具有超低泄漏和出色稳定性的静态随机记忆细胞是当代智能设备中设备上层的记忆的主要选择。本文介绍了一个新型的8T SRAM细胞,其泄漏降低并证明是稳定性的。所提出的SRAM单元使用堆叠效果来减少泄漏和传输门作为访问晶体管以增强稳定性。已经根据功耗和静态噪声边缘(RSNM,HSNM和WSNM)分析了所提出的具有堆叠晶体管的拟议的8T SRAM细胞的性能。在22 nm技术节点时,发现基于FIN-FET的8T细胞的功耗为572 PW,与基于CMOS的8T细胞相比,该因子几乎降低了一个因子。此外,对于基于FinFET的新型8T SRAM细胞在22 nm技术节点的情况下,发现功耗被发现减少了一倍。𝟓×𝟏𝟎𝟏𝟎𝟐𝟐𝟐。WSNM,HSNM和RSNM的8T SRAM细胞在0.9 V电压电压下观察到具有FinFET逻辑的8T SRAM细胞的240 mV,370 mV和120 mV。与常规的6T填充细胞相比,所提出的细胞显示了20%,5.11%和7%的WSNM,HSNM和RSNM,这是分数的。还分析了SNM的灵敏度,并报告了温度变化的敏感性。此外,获得的结果证实了所提出的SRAM细胞的鲁棒性,与近期作品相比。
(1) D. Evans,“物联网:互联网的下一次发展将如何改变一切”,(白皮书),https://www。cisco.com / c / dam / global / ru_ua / assets / pdf / iot-ibsg-0411final。pdf(访问日期 2020-01-04)。(2) G.E.Moore,“将更多组件塞入集成电路”,Proc.IEEE,卷。86,号。1,页。82-85,1998 年 1 月,电子学,卷。38,号。8,页。114-117,1965 年 4 月。(3) A. Chien 和 V. Karamcheti,“摩尔定律:第一个结束和一个新的开始”,计算机,卷。46,页。48-53,2013 年 12 月。( 4 ) T. Hanyu、T. Endoh、Y. Ando、S. Ikeda、S. Fukami、H. Sato、H. Koike、Y. Ma、D. Suzuki 和 H. Ohno,“自旋转移力矩磁阻随机存取存储器 (STT-MRAM) 技术”,载于《非易失性存储器和存储技术的发展》,B. Magyari-Kope 和 Y. Nishi 编辑,页。237-281,第 7 章,Woodhead Publishing 电子和光学材料系列,第 2 版,2019 年。( 5 ) 羽生貴弘,“MTJ / MOSハイブリッド回路技术 ”,応用物理 ,vol.86,no.8,pp.662-665,2017 年 8 月。( 6 ) T. Hanyu、T. Endoh、D. Suzuki、H. Koike、Y. Ma、N. Onizawa、M. Natsui、S. Ikeda 和 H. Ohno,“使用基于 MTJ 的 VLSI 计算的待机无电源集成电路”,Proc.IEEE,vol.104,
摘要 — 发展认知神经科学研究面临的挑战不仅与其人群(可能不太愿意合作的婴儿和儿童)有关,还与能够非侵入性记录大脑活动的神经成像技术选择有限有关。例如,磁共振成像 (MRI) 研究不适合发展认知研究,因为它们要求参与者在嘈杂的环境中长时间保持静止。在这方面,功能性近红外光谱 (fNIRS) 是一种快速出现的事实上的神经成像标准,用于记录婴儿的大脑活动。然而,缺乏相关的解剖图像和用于 fNIRS 数据分析的标准技术框架仍然是深入了解大脑发育工作原理的重大障碍。为此,本研究提出了一种可解释人工智能 (XAI) 系统,用于婴儿 fNIRS 数据,使用由遗传算法 (GA) 2 型模糊逻辑系统 (FLS) 驱动的多变量模式分析 (MVPA) 对不同刺激引起的婴儿大脑活动进行分类。这项工作有助于为透明的 fNIRS 数据分析奠定基础,该分析有可能使研究人员能够将分类结果映射到相应的大脑活动模式,这对于理解人类大脑发育如何发挥作用至关重要。索引术语 — 可解释人工智能、2 型模糊系统、遗传算法、多变量模式分析、发展认知神经科学
在本文中,我们提供了一种更广泛的服务创新视角——一种以服务主导逻辑为基础的视角——超越了困扰该领域现有研究的有形与无形以及生产者与消费者之间的分歧。这种更广泛的服务创新概念强调(1)创新是发生在参与者对参与者 (A2A) 网络中的协作过程,(2)服务是应用专业能力造福另一个参与者或自身,是所有交换的基础,(3)通过增加资源液化和资源密度释放的生成性,以及(4)资源整合是创新的基本方式。基于这些核心主题,我们提供了一个服务创新的三部分框架:(1)服务生态系统,作为参与者通过有效行动创造和再创造的新兴 A2A 结构,为参与者交换服务和共同创造价值提供了组织逻辑; (2) 服务平台,通过液化资源和提高资源密度(方便获取合适的资源包)来提高服务交换的效率和效果,从而成为创新的场所;(3) 价值共创,将价值视为服务提供者和服务受益者(如客户)通过资源整合共同创造的,并表明需要有机制来支持底层角色和流程。在讨论这些组成部分时,我们考虑信息技术作为操作资源和操作资源的作用,然后研究其对数字化服务创新的研究和实践的影响。
简介 当今快速变化的全球政治环境对自由世界国家的军事战略产生了重大影响。各国正在就国防和军事装备需求做出重要决定。然而,无论这些政治变化如何,使用核武器的威胁仍然是一种切实可行的可能性。只要存在先发制人打击能力,就会设计出抗辐射战略和战术系统。此外,随着越来越多的国家参与航空航天领域,抗辐射技术越来越多地集中于太空通信和探索。随着人类越来越深入太空,越来越有必要加强系统以抵御太空的天然辐射环境。设计和生产抗辐射系统需要大量时间,而且成本高昂。为了避免因辐射设计不当而过早报废,必须采取各种预防措施,确保卫星能够达到其预期使用寿命。有时卫星绕地球运行的时间超过十年,由于强调性能、可靠性和抗辐射性,卫星的成本非常高。整个系统的辐射加固是首要问题。从历史上看,对辐射敏感的空间系统一直采用各种材料进行屏蔽。但由于有效载荷磅与推力的成本比也是一个关键问题,这种方法变得不可接受。需要更好的方法,例如抗辐射 IC,来加固系统。太空中辐射暴露的严重程度与战术领域中的辐射暴露不同。虽然屏蔽空间系统非常昂贵,但在战术辐射环境中,防护却很经济,但航空电子系统、一些坦克系统和舰载设备是例外。虽然战术设备中大多数故障系统都可以轻松更换,但军事条件和要求通常要求电子系统在任何核事件中保持完全正常运行。最后,当今的商业市场需要有限的辐射防护措施。在这里,屏蔽通常是最可行和最经济的方法。