使用Junos OS,您可以将单个路由器分为多个逻辑设备,这些设备执行独立的路由任务,称为逻辑系统。逻辑系统主要由分配给它们的资源,为逻辑上下文,其路由配置及其逻辑接口分配启用的功能来定义。由于逻辑系统执行一旦由主路由器处理的任务的子集,因此逻辑系统提供了一种最大化使用单个路由或开关平台的有效方法。
“可设计”逻辑设备是用户可设计但不能编程的集成电路。设计提交给制造商以在设备中实施。专用集成电路 (ASIC) 是可设计设备的一个示例。复杂电子设备的保证活动通常落后于技术的发展步伐。这些设备通常用于 NASA 系统,有时用于安全关键系统。软件和质量保证工程师都需要了解这些设备是什么、在哪里使用以及它们是如何设计的。由于 NASA 安全和任务保证办公室才刚刚开始处理这些设备,因此无法提供详细的保证指南。本指南提供了一些一般性建议,如果应用这些建议,可能会增加对复杂电子设备质量的信心。
采用虚拟机箱技术的 EX 系列以太网交换机将模块化系统的可靠性与可堆叠交换机的经济性和灵活性相结合,为校园、远程和分支机构环境提供高性能、可扩展的解决方案。在虚拟机箱配置中,多个 EX 系列交换机可以互连以作为单个逻辑设备运行,从而大大简化管理和支持。在基于标准的开放 ESI 链路聚合组 (LAG) 配置中,可以通过 Contrail 服务编排单独轻松地管理交换机。借助多千兆端口速度和高达 95 W 的 PoE++ 支持,企业可以部署基于 EX 系列的可演进有线网络基础设施,以应对包括物联网和 Wi-Fi 6 在内的未来。
1。使用FPGA公开设计方法。2。可以深入了解故障模型。3。了解用于故障检测的测试模式生成技术。4。在连续电路中设计故障诊断。5。使用案例研究在流量的设计中提供理解。单元 - I可编程逻辑设备:可编程逻辑设备,SPLD,PAL设备,PLA设备,GAL设备,CPLD架构,FPGAS-FPGA技术,体系结构,Virtex CLB和Slice,FPGA编程技术,XC2000,XC2000,XC3000,ACT1 Act1 anderction Actient1 Actrect1,Act1 andertion。[TEXTBOOK-1] UNIT- II Analysis and derivation of clocked sequential circuits with state graphs and tables: A sequential parity checker, Analysis by signal tracing and timing charts-state tables and graphs-general models for sequential circuits, Design of a sequence detector, More Complex design problems, Guidelines for construction of state graphs, serial data conversion, Alphanumeric state graph notation.需要和设计策略,用于多盘顺序电路。[教科书2]单元-III顺序电路设计:顺序电路设计的设计步骤,示例,代码转换器,迭代循环设计,比较器的设计,控制器(FSM) - 标准,同步,FSM问题,FSM问题,使用FPGAS的序列电路共享,使用FPGAS的顺序设计,模拟和测试的序列循环设计。[Techtbook-3&Ref.1][教科书2]单元 - IV故障建模和测试模式生成:逻辑故障模型,故障检测和冗余,故障等效性和故障位置,故障优势,单个卡在故障模型,多个卡在故障模型上,桥接故障模型。通过常规方法,路径敏化技术,布尔差异方法,Kohavi算法,测试算法-D算法,随机测试,过渡计数测试,签名分析和测试桥梁的断层对组合回路的故障诊断。
开发的高速模糊推理机器学习设备的主要目的是促进系统学习功能并改善计算性能。这是通过将训练单元的反馈添加到Defuzzification单元来实现的,该单元允许训练模糊逻辑设备[7],[8]。还排除了Defuzzification单元中的某些操作,这将归化过程的计算性能时间降低至180 ns。基于区域比率方法的单层解体机的高速模糊逻辑推理机器学习设备的结果是,在模糊逻辑系统的输出下,输入数据将输入数据的生成和转换为单个指定的CRISP值。这种类型的设备可用于图像分类或热电偶控制任务[9],[10]。此外,开发了基于面积比方法的神经模糊学习的本体论模型:
1。使用FPGA公开设计方法。2。可以深入了解故障模型。3。了解用于故障检测的测试模式生成技术。4。在连续电路中设计故障诊断。5。使用案例研究在流量的设计中提供理解。单元I可编程逻辑设备:可编程逻辑设备,SPLD,PAL设备,PLA设备,GAL设备,CPLD-Archittuction,FPGAS-FPGA技术,体系结构,Virtex CLB和Slice,FPGA编程技术,XC2000,XC2000,XC3000,Act 3 Actient Act1 anderct1 anderct1 anderct1 anderct1 anderct1 anderct1[TEXTBOOK-1] UNIT-II Analysis and derivation of clocked sequential circuits with state graphs and tables: A sequential parity checker, Analysis by signal tracing and timing charts-state tables and graphs-general models for sequential circuits, Design of a sequence detector, More Complex design problems, Guidelines for construction of state graphs, serial data conversion, Alphanumeric state graph notation.需要和设计多锁顺序电路的策略。[TEXTBOOK-2] UNIT-III Sequential circuit Design: Design procedure for sequential circuits-design example, Code converter, Design of Iterative circuits, Design of a comparator, Controller (FSM) – Metastability, Synchronozation, FSM Issues, Pipelining resources sharing, Sequential circuit design using FPGAs, Simulation and testing of Sequential circuits, Overview of computer Aided Design.[Ref.3][教科书2]单元IV故障建模和测试模式生成:逻辑故障模型,故障检测和冗余,故障等效性和故障位置,故障优势,单个卡在故障模型,多个卡在故障模型上,桥接故障模型。通过常规方法,路径敏化技术,布尔差异方法,Kohavi算法,测试算法-D算法,随机测试,过渡计数测试,签名分析和测试桥梁的断层对组合回路的故障诊断。[教科书-3&Ref.1]单元 - 顺序电路中的v故障诊断:电路测试方法,过渡检查方法,状态识别和故障检测实验,机器识别,故障检测实验的设计。
论文是在CMOS平台技术和应用领域(例如HPC,LOP,移动,汽车,低温CMO等领域的征求力。),逻辑设备和电路,高级节点的过程集成方案,材料,过程和计量技术的创新以及设计技术合作化(DTCO)和系统技术协会(STCO)。平台技术包括最先进的SI和超越SI通道设备,全面的设备,具有不同极性晶体管的堆叠设备,高级互连,新颖的功率分布集成方案,异源2.5D/3D集成方案和Beol兼容晶体管。设备架构,设备设计和分析,过程集成,过程和模式的模块进步,计量学,物理布局效应,可变化降低的技术,收益率,dtco/stco在征求区域中的方法和解决方案具有很高的兴趣。
摘要 - 基于域墙(DW)运动的旋转逻辑设备提供了灵活的体系结构,以存储和携带逻辑信息在电路中。在此设备概念中,信息以多个磁性隧道连接(MTJ)共享的磁道磁态进行编码,并通过DW运动处理。在这里,我们证明可以使用新型的MTJ堆栈来实现这种基于纳米级DW的逻辑设备的全电动控制。除了各向同性的场驱动运动外,我们还显示了由电流驱动的DWS的方向运动,这是逻辑操作的关键要求。使用DW运动对逻辑门的完整电气控制。我们的设备在全晶片的IMEC的300毫米CMOS Fab中制造,这清除了大规模集成的路径。因此,此概念证明为逻辑和神经形态应用提供了高性能和低功率DW设备的潜在解决方案。
用于多功能应用的电动机械开关,具有纳米尺度的超小尺寸,以非常小的电压运行,由于电极之间的空气间隙分离,泄漏电流大约为零泄漏电流,这些电极与三个端子易于控制。纳米电动机械开关是电子开关,类似于应用程序中常规半导体开关所使用的开关,因为它们可以用作继电器,逻辑设备。纳米电力开关的基本原理是电子开关操作与半导体开关根本不同。它们比传统的半导体开关具有许多优势,例如低功率数字逻辑应用,具有很小的电压信号的能力以进行低动态能耗以及在敌对环境(例如高温和辐射污染的空间)上的耐用性。在本文中,我们将使用叠加理论设计,实现和测试Nano Electro机械开关的矩阵。使用MATLAB-SIMULINK和ORCAD PSPICE环境实施了这些开关的模拟。另外,通过纳米运动的运动来控制电流的流动,以使电极之间的物理接触或破坏物理接触。