当前用于对噪声量子处理器进行基准测试的方法通常测量平均错误率或过程保真度。然而,容错量子误差校正的阈值是以最坏情况错误率(通过钻石范数定义)表示的,这可能与平均错误率相差几个数量级。解决这种差异的一种方法是使用随机编译 (RC) 等技术对量子门的物理实现进行随机化。在这项工作中,我们使用门集断层扫描对一组双量子位逻辑门进行精确表征,以研究超导量子处理器上的 RC。我们发现,在 RC 下,门错误可以通过随机泡利噪声模型准确描述,而没有相干误差,并且空间相关的相干误差和非马尔可夫误差受到强烈抑制。我们进一步表明,对于随机编译的门,平均错误率和最坏情况错误率相等,并且测量到我们的门集的最大最坏情况误差为 0.0197(3)。我们的结果表明,当且仅当门是通过调整噪声的随机化方法实现的,随机化基准是验证量子处理器的错误率是否低于容错阈值以及限制近期算法的失败率的可行途径。
摘要:铁电电容器(FeCAP)具有工艺兼容性高、可靠性高、超低编程电流和操作速度快等特点,是传统易失性和非易失性存储器的良好替代品,在存储、计算和内存逻辑领域也具有巨大的潜力。尽管如此,在 FeCAP 器件中实现逻辑和存储的有效方法仍然缺乏。本研究提出了一种基于电荷共享功能的 1T2C FeCAP 原位按位 X(N)OR 逻辑。首先,利用 1T2C 结构和两步写回电路,以比先前工作更低的复杂度实现了无损读取。其次,在 X(N)OR 操作期间采用了双线激活的方法。验证结果表明,提出的基于 1T2C FeCAP 的按位逻辑运算的速度、面积和功耗都有显著提高。