合成生物学作为一个新兴领域,旨在通过构建人工合成电路实现对细胞网络的精准调控,为治疗疾病和发现新型药物靶点带来了巨大的机遇。根据不同逻辑门的组合方式,可以创建各种合成电路以实现多级调控。在给定的合成电路中,药物通常作为输入来驱动电路运行。构建药物反应基因电路用于实验治疗各种疾病模型,包括代谢疾病、免疫疾病、癌症和细菌感染,已成为可能。合成生物学与 CRISPR 系统联合使用可很好地进行药物靶点功能筛选。值得注意的是,越来越多精心设计的电路被开发出来,用于发现新的药物靶点并精准调控疾病的药物治疗。
细胞因子参与免疫细胞的多种行为。全身给药细胞因子可以引发或增强某些癌症患者的抗肿瘤反应。不幸的是,细胞因子的外源添加带来了各种挑战,例如增加了细胞因子释放综合征(CRS)的风险。在船上,膜螺旋细胞因子不仅可以减轻外源性细胞因子的毒性风险,而且还可以克服其他局限性,包括短期半寿命和较差的组织渗透。但是,船上细胞因子的效力提高不得损害工程细胞的治疗窗口。这在介导肿瘤特异性杀伤的逻辑门(例如Lir-1)的产品中尤其重要。在这里,我们表明,在各种急性和长期肿瘤共培养分析中,在体内研究中,膜束缚的IL-12(MEM-IL-12)在不阻碍选择性的情况下增强了TMOD的效力。
摘要:我们将介绍经典的确定性计算,作为以位的形式存储的处理信息,并以逻辑门为基础。使用此模型,我们将描述如何在计算机上执行简单任务。我们将在我们的电路中介绍元素,其动作是随机的,并通过指定概率进行建模,并使用线性代数符号和术语来研究所得的随机计算模型,类似于量子计算中使用的模型。我们将研究量子计算的电路框架,并注意与经典随机计算相似的地方和根本不同。我们将通过描述量子算法,游戏和协议的表现,这些量子计算的力量似乎超出了其经典对应物。我们不会期望事先熟悉量子物理学或计算机科学。我们的讨论将为对代数的任何人以及在第一年本科课程级别上的概率访问。
DOI: 10.7498/aps.71.140101 类脑计算技术作为一种脑启发的新型计算技术 , 具有存算一体、事件驱动、模拟并行等特征 , 为 智能化时代开发高效的计算硬件提供了技术参考 , 有望解决当前人工智能硬件在能耗和算力方面的 “ 不可持续发展 ” 问题 . 硬件模拟神经元和突触功能是发展类脑计算技术的核心 , 而支持这一切实现 的基础是器件以及器件中的物理电子学 . 根据类脑单元实现的物理基础 , 当前类脑芯片主要可以分 为数字 CMOS 型、数模混合 CMOS 型以及新原理器件型三大类 . IBM 的 TrueNorth 、 Intel 的 Loihi 、清华大学的 Tianjic 以及浙江大学的 Darwin 等都是数字 CMOS 型类脑芯片的典型代表 , 旨 在以逻辑门电路仿真实现生物单元的行为 . 数模混合型的基本思想是利用亚阈值模拟电路模拟生物 神经单元的特性 , 最早由 Carver Mead 提出 , 其成功案例有苏黎世的 ROLLs 、斯坦福的 Neurogrid 等 . 以上两种类型的类脑芯片虽然实现方式上有所不同 , 但共同之处在于都是利用了硅基晶体管的 物理特性 . 此外 , 以忆阻器为代表的新原理器件为构建非硅基类脑芯片提供了新的物理基础 . 它们 在工作过程中引入了离子动力学特性 , 从结构和工作机制上与生物单元都具有很高的相似性 , 近年 来受到国内外产业界和学术界的广泛关注 . 鉴于硅基工艺比较成熟 , 当前硅基物理特性是类脑芯片 实现的主要基础 . 忆阻器等新原理器件的类脑计算技术尚处于前沿探索和开拓阶段 , 还需要更成熟 的制备技术、更完善的系统框架和电路设计以及更高效的算法等 .
控制量子位的状态涉及操纵其量子态以执行所需的操作。这种操纵通常涉及应用量子门序列 [3],它们类似于经典逻辑门,但作用于量子态 [4]。这些门可以确定性地改变量子位的状态,从而产生叠加和纠缠,以及计算所需的其他量子操作。测量量子位的状态涉及确定其在特定时刻的量子态。量子位耦合到位于其物理位置附近的微波谐振器。正是通过这些谐振器,可以确定或“读出”量子位的状态。确定量子位状态的一种常用技术是色散读出法 [5]。该方法利用了这样一个事实:量子位的状态对读出谐振器的某些宏观参数(例如其谐振频率)有直接影响。
摘要 - 通过利用亚波长等离子设备来实现紧凑的光学整合电路,需要设计紧凑和有效的光子对等离激元模式转换器的设计。尤其是对于需要多个转换器的等离子多输入设备,例如逻辑门,可以在很大程度上通过光子波导将足迹构成,这应该在设计中考虑。在这项工作中,我们为应用多输入等离子体设备的应用模拟和基准五个Photonic to for等离子体模式转换器拓扑。我们的设计包括等离子波导的定向和末端耦合方案,以及线和插槽构造的Si光子波导。考虑到光子波导和等离子波导,总足迹以及模式转换效率之间的音高不匹配,我们优化了转换器的性能。
课程目的:本课程是电气工程中电子和混合信号电路设计重点的领域衔接课程。它是 EEE 334,电路 II 的延续。在 EEE 334 中,您将了解晶体管和电子电路的基础知识。本课程将是您的第一门真正的电子电路设计课程,重点介绍如何构建数字和模拟电路。实际设计将在配套实验室中实现,您将需要使用 CADENCE EDA 工具构建和模拟特定电路,从 CMOS 逻辑门到差分放大器。本课程最重要的特点可能是它对电子电路的时间和频域响应的处理。鉴于这一特点,强烈建议学生不仅复习他们在 EEE334 中学到的知识,还要复习 EEE 202,电路 I 中涵盖的网络分析原理。
本文的目的是对离子阱量子计算机的操作进行一般性描述,从一维陷阱中离子的限制到逻辑门的实现。我们从通过谐波势限制离子的保罗离子阱的描述开始,然后描述了如何通过与外部激光产生的电磁场相互作用来改变离子的内部状态。我们详细研究了主要类型的单量子比特门和两种类型的多量子比特 CNOT 门,即 Cirac-Zoller 门和 Mølmer-Sørensen 门。再次,这种门的实现已经在囚禁离子计算机的具体情况下进行了描述。在最后一部分,我们介绍了 IonQ 公司在线提供的真实离子阱处理器上的量子算法的实现。具体来说,准备并测量了两种类型的量子态:贝尔态和更一般的 GHZ 态。
有许多基本方法用于量子计算硬件,例如门模型,退火器,拓扑等。在GATE模型量子计算下,量子逻辑门是在少数Qubit上运行的基本量子电路,它们成为量子电路的构建块。使用退火量子计算(这是一种绝热量子计算),该方法是通过利用特定于量子力学的属性,例如:量子隧道,纠缠和叠加,从大量可能的解决方案中选择问题的最佳解决方案。退火量子计算利用了现实世界物理系统的自然趋势,可以找到低能配置。拓扑量子计算描述了经历物理变化的结构,例如:弯曲,扭曲,压实或拉伸;但是,量子位仍然保持原始形式的属性。