摘要:性格是个人行为和情绪模式的特征集,由生物和环境因素发展而来。性格特征的识别对于使人机交互 (HCI) 应用程序更加逼真、更有针对性和用户友好至关重要。使用神经科学数据识别性格的能力是性格的神经生物学基础。本文旨在结合头皮脑电图 (EEG) 和机器学习技术自动识别性格。由于静息状态脑电图尚未被证明能够有效预测性格,我们使用了情绪处理过程中引发的脑电图记录。本研究基于 AMIGOS 数据集中的数据,该数据集反映了 37 名健康参与者的反应。从清理后的脑电图信号中提取脑网络和图论参数,同时使用 k 均值算法将每个特征得分分为低级和高级。随后使用特征选择算法将特征集大小缩减为最佳的 10 个特征,以分别描述每个特征。最后采用支持向量机 (SVM) 对每个实例进行分类。我们的方法对外向性、宜人性、责任心、神经质和开放性的分类准确率分别为 83.8%、86.5%、83.8%、83.8% 和 73%。
摘要:阳极死区(DEA)和阳极再循环操作通常用于提高汽车质子交换膜(PEM)燃料电池的氢气利用率。由于阳极中的氮交叉和液态水积聚,电池性能会随着时间的推移而下降。高效预测PEM燃料电池的短期降解行为具有重要意义。在本文中,我们提出了一种基于多元多项式回归(MPR)和人工神经网络(ANN)的数据驱动降解预测方法。该方法首先预测电池性能的初始值,然后预测电池性能随时间的变化以描述PEM燃料电池的降解行为。使用PEM燃料电池在DEA和阳极再循环模式下的两种降解数据案例来训练模型并证明所提方法的有效性。结果表明,该方法预测的平均相对误差比仅使用ANN或MPR预测的平均相对误差小得多。两隐层ANN的预测性能明显优于单隐层ANN。使用S形激活函数预测的性能曲线比使用整流线性单元(ReLU)激活函数预测的性能曲线更平滑,更逼真。
摘要:虚拟现实(VR)技术越来越多地应用于人机交互(HRI)研究,以增强交互的沉浸感和真实感。然而,VR 融入 HRI 也带来了新的挑战,例如延迟、虚拟与现实环境不匹配以及对人类用户的潜在不利影响。尽管存在这些挑战,但在 HRI 中使用 VR 仍有可能带来许多好处,包括改善沟通、提高安全性以及加强培训和教育。然而,学者们对 VR 在人机交互中应用的最新进展进行回顾的研究很少。为了弥补这一差距,本文概述了在 HRI 中使用 VR 的挑战和好处,以及该领域的当前研究和未来发展方向。研究发现,机器人变得比以往任何时候都更加个性化、互动性和吸引力;随着虚拟现实创新的普及,我们或许能够预见到 VR 将被广泛用于控制机器人,以完成医院、学校和工厂的各种任务。尽管如此,仍存在一些挑战,例如需要更先进的 VR 技术来提供更逼真、身临其境的体验,开发更像人类的机器人模型来改善社交互动,以及需要更好的方法来评估 VR 在人机交互中的有效性。
自从计算机诞生以来,各种任务的数据存储和创建问题一直存在。在计算机图形学和视频游戏方面,对资产的需求一直存在。虽然现在空间问题不再是开发人员的主要关注点之一,但能够自动创建资产的需求仍然很重要。现代观众和应用程序所要求的图形保真度需要艺术家和设计师付出大量努力,这需要花费很多钱。3D 场景的自动生成在人工智能 (AI) 机器人训练任务中至关重要,由于机器学习算法需要大量数据,训练期间生成的数据量甚至无法由一个人查看。家具生成和放置、材料和照明随机化是一项完全独立但对于集成解决方案而言必不可少的任务。在本文中,我们提出了用于计算机图形学和机器人学习应用的室内生成器。建议的框架能够以照片般逼真的质量生成和渲染带有家具的室内装饰。我们结合了现有的生成计划和布置室内装饰的算法,最后添加了材料和照明随机化。我们的解决方案包含 3D 模型和材料的语义数据库,这使生成器能够获得具有随机化和每像素掩码的逼真场景,以训练检测和分割算法。
(通讯作者电子邮件:zhangyahui@ysu.edu.cn(Yahui Zhang))摘要以及智能转换系统(ITS)和网络技术的快速发展,车辆可以访问更丰富的交通数据,为现在更有效的驱动控制铺平了道路。提出了一种专门针对混合电动卡车导航复杂多相交场景的新型分层生态驾驶策略。最初,模拟场景旨在模拟逼真的卡车遵循场景。随后,使用安全离线深层确定性政策梯度(SDDPG)算法制定了高层卡车跟随策略。此策略完全使用了领先的车辆和交通信号数据的见解。具体来说,考虑安全约束的逻辑判断模块已集成到培训处理中,以最大程度地减少碰撞风险。此外,设置了安全奖励功能,以指导代理学习更安全的动作。转移到下层,使用深厚的增强学习(DRL)技术提出了能量管理策略。引入了独特的奖励成型功能,以有效地指导学习过程。最终,与动态编程(DP)方法相比,提出的方法表明,省油速度为97.46%。关键字:混合动力卡车,卡车跟随,SDDPG,能源管理策略
摘要 随着星系弱透镜的统计能力达到百分比级精度,需要大规模、逼真且稳健的模拟来校准观测系统,特别是考虑到随着勘测深度的增加,物体混合的重要性日益增加。为了捕捉剪切和光度红移校准中混合的耦合效应,我们定义了透镜的有效红移分布 nγ(z),并描述了如何使用图像模拟来估算它。我们使用一套广泛的定制图像模拟来表征应用于暗能量调查 (DES) 第 3 年数据集的剪切估计管道的性能。我们描述了多波段、多时期的模拟,并通过与真实 DES 数据的比较证明了它们的高水平的真实感。我们通过在我们的表面模拟上运行变体来分离产生剪切校准偏差的效应,并发现与混合相关的效应是平均乘法偏差的主要贡献,约为 -2%。通过生成随红移变化的输入剪切信号模拟,我们校准了有效红移分布估计中的偏差,并证明了这种方法在混合存在时的重要性。我们提供经过校正的有效红移分布,其中包含统计和系统不确定性,可用于 DES 第三年弱透镜分析。
摘要。可以使用医学成像数据研究人体解剖学、形态学和相关疾病。然而,由于管理和隐私问题、数据所有权和获取成本,医学成像数据的访问受到限制,从而限制了我们了解人体的能力。解决这个问题的一个可能方法是创建一个模型,该模型能够学习,然后根据特定的相关特征(例如年龄、性别和疾病状况)生成人体的合成图像。最近,以神经网络形式出现的深度生成模型已用于创建自然场景的合成二维图像。然而,由于数据稀缺以及算法和计算限制,生成具有正确解剖形态的高分辨率三维体积图像数据的能力受到阻碍。这项工作提出了一个生成模型,该模型可以扩展以生成解剖学正确、高分辨率和逼真的人脑图像,并具有进行进一步下游分析所需的质量。生成无限量数据的能力不仅能够实现大规模人体解剖学和病理学研究,而不会危及患者隐私,而且还能显著推动异常检测、模态合成、有限数据下的学习以及公平且合乎道德的人工智能领域的研究。代码和训练模型可在以下网址获取:https://github.com/AmigoLab/SynthAnatomy。
摘要最常见的基因调节机制是当转录因子(TF)蛋白与调节序列结合以增加或减少RNA转录时。但是,在搜索这些序列时,TFS面临两个主要挑战。首先,相对于基因组长度,这些序列消失了。第二,散布在整个基因组上的几乎相同的序列,导致蛋白质暂停搜索。,但正如大肠杆菌中LACI调节的计算研究中所指出的那样,如果考虑DNA循环,这种几乎目标可能会较低。在本文中,我们探讨了这是否也发生在整个染色体的距离上。为此,我们开发了一个跨尺度的计算框架,该框架结合了建立的促进式扩散模型,用于基地级搜索和一个捕获全染色体范围的飞跃的网络模型。为了使我们的模型逼真,我们使用HI-C数据集作为超过100 TF的长期DNA片段和结合曲线之间3D接近的代理。使用我们的跨尺度模型,我们发现指向单个目标的中位数搜索时间严重取决于网络组合的结合节点强度(链接权重的总和)和局部分离率。另外,通过随机化这些速率,我们发现某些实际的3D目标配置比随机对应物更快或较慢。这一发现暗示染色体的3D结构漏斗对于相关的DNA区域必不可少。
近年来,工作和社交等日常活动已逐渐转向更远程和虚拟的环境。随着 COVID-19 疫情的爆发,从实体到虚拟的转变加速了,这几乎影响了我们生活的方方面面,包括商业、教育、贸易、医疗保健和个人生活。这种从面对面互动到远程互动的快速大规模转变加剧了我们当前技术缺乏功能性且在重现人际互动方面能力有限的事实。为了帮助解决未来的这些限制,我们推出了“Telelife”,这是一个近期和远期的愿景,描绘了改善远程生活的潜在手段,并使其更好地与我们在现实世界中的互动、生活和工作方式保持一致。Telelife 包含了技术和概念的全新协同作用,例如数字孪生、虚拟/物理快速原型设计以及注意力和情境感知用户界面,以及可以支持超逼真图形和触觉反馈、用户状态检测等的创新硬件。这些想法将很快引导我们日常生活和惯例的转变,目标是到 2035 年。此外,我们还在与 Telelife 这一愿景相关的领域中确定了影响深远的应用机会。除了最近对人机交互、普适计算和虚拟现实等相关领域的调查外,我们在本文中提供了一个元合成,以指导未来对远程生活的研究。
近年来,各公司一直在为由人工智能 (AI) 控制的数字虚拟代理开发更逼真的人脸。但用户对与此类虚拟代理互动有何感受?我们使用了一项受控实验室实验来检查用户对通过视频(即 Skype)以及非常逼真的虚拟形象出现的真实人类旅行代理的感知可信度、亲和力和偏好;一半的参与者(被误导性地)被告知虚拟形象是由人工智能控制的虚拟代理,而另一半则被告知虚拟形象由同一个人类旅行代理控制。结果表明,参与者认为视频人类代理更值得信赖,对他更有亲和力,并且比两个虚拟形象版本都更喜欢他。相信虚拟形象是由人工智能控制的虚拟代理的用户对代理的亲和力、可信度和偏好程度与相信虚拟形象由人类控制的用户相同。因此,使用逼真的数字化身会降低亲和力、可信度和偏好,但虚拟形象如何控制(由人还是机器)则没有影响。结论是,仅提高视觉保真度就能带来显著的积极变化,用户并不反对先进的人工智能模拟人类的存在,有些人甚至可能期待这样先进的技术。1. 简介