一周的国家一级教师发展计划(FDP)关于1月29日至2024年2月2日计划的“人工智能多学科研究趋势(AI)和数据科学”。此FDP旨在使教职员工掌握遍历AI和数据科学景观所需的知识和技能,从而促进了在学术界的创新,协作和负责任的技术文化。
输入:时刻数:S,热化学标量数:N 输入:𝚿∈ℝ 𝑆×𝑁:各个时刻热化学状态的真实解 要求:𝐼 𝑆:一个数值 ODE 求解器,可及时推进 i = 1 到 N 的解 >> 循环遍历所有热化学标量 初始化𝝃 𝑖 >> 初始化第 i 个物种的模型参数
摘要 - 基于此地图的环境和计划途径中的遍历成本对于自主航很重要。我们提出了一种神经动物导航系统,该系统利用尖峰神经网络(SNN)波前策划者和电子企业学习同时绘制和计划路径在大而复杂的环境中。,我们结合了一种新颖的映射方法,当与尖峰波前计划器(SWP)结合使用时,通过选择性地考虑任何成本组合,可以进行自适应计划。该系统在室外环境中具有障碍物和不同地形的室外环境中进行测试。结果表明,该系统能够使用三种成本量度,(1)轮子的能量消耗,(2)在存在障碍物的情况下花费的时间以及(3)地形斜率。在仅十二个小时的在线培训中,电子prop通过更新SWP中的延迟来学习并将遍历成本纳入路径计划地图。在模拟路径上,SWP计划比A*和RRT*明显短,成本较低。SWP与神经形态硬件兼容,可用于需要低尺寸,重量和功率的应用。
摘要 - 我们专注于人类机器人协作运输,其中机器人和用户协作将对象转移到目标姿势。在没有明确交流的情况下,这个问题是具有挑战性的,因为它需要两个异质的代理之间的紧密隐式协调,他们的感应,驱动和推理能力非常不同。我们的关键见解是,两个代理可以通过将微妙的交流信号编码为影响运输对象状态的动作来流利地协调。为此,我们设计了一种推理机械性,该推论概率地绘制了对两个代理执行的联合行动的观察到一组工作空间遍历的联合策略。基于这种机制,我们定义了代表人类对展开遍历策略的不确定性的成本,并将其引入模型预测控制器,该模型在不确定性最小化和效率最大化之间平衡。我们将框架部署在移动操纵器(Hello Robot Stretch)上,并在受试者内实验室研究(n = 24)中对其进行评估。我们表明,与缺乏交流机制的基线相比,我们的框架可以使机器人能够更加流利,合格的合作伙伴,使机器人能够更加流利,有能力的合作伙伴。索引条款 - 人类机器人协作;人类机器人团队;隐式通信
1. 理解数据结构的基本概念。 2. 理解用于分析算法性能的符号。 3. 为特定应用选择并应用适当的数据结构。 4. 理解递归的概念及其在解决问题中的应用。 5. 展示对搜索和排序算法的透彻理解。 UNIT-I 简介:数据类型、数据结构、数据结构类型、操作、ADT、算法、算法比较、复杂性、时间-空间权衡。递归:简介、递归函数的格式、递归与迭代、示例。 UNIT-II 链表:简介、链表和类型、链表的表示、链表上的操作、链表与数组和动态数组的比较。 UNIT-III 堆栈和队列:堆栈简介、堆栈的应用、堆栈实现的实现和比较。队列简介、队列的应用和实现、优先级队列和应用。 UNIT-IV 树:定义和概念、二叉树的运算、二叉树的表示、一般树到二叉树的转换、树的表示、树的遍历、二叉搜索树。 UNIT-V 图:介绍、图的应用、图表示、图遍历、最小生成树。搜索和排序:线性搜索、二叉搜索、排序算法 - 冒泡排序、选择排序、快速排序、堆排序。教科书:
几十年来,各种数学家、计算机科学家、物理学家和工程师在定量线性代数 (QLA) 和量子信息理论 (QIT) 之间建立了惊人的联系和联系。定量线性代数位于差异理论、谱图理论、随机矩阵、几何群论、遍历理论和冯·诺依曼代数等主题的交叉点。特别是,特别强调了无限维分析中出现的问题与有限维中定量出现的问题之间的联系。
摘要 - 为了主动浏览和遍历各种特征,主动使用视觉感知是必不可少的。我们旨在调查使用稀疏视觉观测值的可行性和性能,以在以人为中心的环境中在一系列常见的地形(步骤,坡道,间隙和楼梯)上实现感知运动。我们制定了适合在感兴趣地形上运动的稀疏视觉输入的选择,并提出了一个学习框架,以整合外部感受和本体感受状态。我们专门设计了状态观察和培训课程,以在各种不同的地形上有效地学习反馈控制政策。我们在各种任务中广泛验证和基准了学到的政策:在地面上行走的全向行走,并在各种障碍物上向前移动,显示出高成功的遍历率。此外,我们通过在新的看不见的地形上增加各种水平的噪声和测试来研究外观感受性消融并评估政策概括。我们证明了自主感知运动的能力,只能使用直接深度测量中的稀疏视觉观测来实现,这些观察值易于从激光雷达或RGB-D传感器中易于获得,在20厘米高度的高高高度上显示出强大的上升和下降,即20 cm的高度,即50%的腿长和强劲的腿部和稳健的噪声和Unigeseen anderseenseles anderseens anderseens anderseen anderseenseles anderseen anderseen sereen seleseen anderains ternales anderains。
摘要 - 我们专注于人类机器人协作运输,其中机器人和用户协作将对象转移到目标姿势。在没有明确交流的情况下,这个问题是具有挑战性的,因为它需要两个异质的代理之间的紧密隐式协调,他们的感应,驱动和推理能力非常不同。我们的关键见解是,两个代理可以通过将微妙的交流信号编码为影响运输对象状态的动作来流利地协调。为此,我们设计了一种推理机械性,该推论概率地绘制了对两个代理执行的联合行动的观察到一组工作空间遍历的联合策略。基于这种机制,我们定义了代表人类对展开遍历策略的不确定性的成本,并将其引入模型预测控制器,该模型在不确定性最小化和效率最大化之间平衡。我们将框架部署在移动操纵器(Hello Robot Stretch)上,并在受试者内实验室研究(n = 24)中对其进行评估。我们表明,与缺乏交流机制的基线相比,我们的框架可以使机器人能够更加流利,合格的合作伙伴,使机器人能够更加流利,有能力的合作伙伴。索引条款 - 人类机器人协作;人类机器人团队;隐式通信
疲劳寿命预测中常用的模型基于以不同方式计数的循环。最常用的方法是基于雨流计数,它以非常特殊的方式处理应力历史。这种方法有三个主要缺点。这是一种从连续变化的应力曲线产生循环的临时方法。它以非常严格的方式在循环计数中引入记忆,并且算法相当复杂。另一方面,基于平交点的模型易于应用,但平交点谱不包含足够的应力历史信息。这里提出了一个模型,其中损伤累积取决于实际的平交点和压缩在状态变量中的应力历史。提出的模型具有以下属性。当总损伤超过给定值时,就会发生故障。每次应力变化都会导致非负损伤,这种损伤仅取决于实际应力、其变化和应力状态变量。在特定应用中,状态变量可以解释为裂纹的张开应力。该模型是时不变的,即如果时间尺度发生变化,损伤不会改变。因此,寿命由应力的最大值和最小值序列决定。通常,状态变量的动态必须是时不变的和稳定的,即平稳和遍历的随机应力函数应生成平稳和遍历的状态变量。在这种情况下,可以根据损伤强度来预测疲劳寿命,损伤强度是单位时间的预期损伤。
