头部和颈部paragangliomas(HNPGL)是罕见的神经内分泌肿瘤,具有高度的遗传力,并且主要与十个基因的突变相关,例如SDHX,SDHAF2,SDHAF2,VHL,VHL,RET,RET,RET,NF1,NF1,NF1,TMEM127,MAX,MAX,FH,MEN2,MEN2,MEN2,MEN2和SLC25A11。阐明突变患病率对于基因检测的发展至关重要。在这项研究中,使用整个外显子组测序中,我们在102名HNPGL(82个颈动脉和23个迷走神经paragangliomas)的俄罗斯患者中鉴定了主要易感性基因中的致病/可能致病变异。在43%(44/102)的患者中检测到致病性/可能的致病变异。我们确定了测试基因的以下变体分布:SDHA(1%),SDHB(10%),SDHC(5%),SDHD(24.5%)和RET(5%)。SDHD变体。因此,在HNPGLS患者中,最常见的基因是SDHD,其次是SDHB,SDHC,RET和SDHA。
虽然标准的下一代测序分析主要依赖于有前途的家庭的整个外显子组测序(WES),但在过去几年中发现了大量新型基因,但在所有罕见的神经退行性疾病的家庭中,仍未解决50%的家庭。这种缺失的遗传力甚至明显的遗传疾病是由于非编码空间的变化(例如,深入/调节区域)的变化,但也部分是由于当前标准分析可能无法识别出不知情意义的变异变异的长期差异。我的项目假设是高级队列级生物信息学方法,这些方法超出了标准的基于家庭的WES分析,即使在外显子空间中,也可以发现罕见神经退行性疾病的新遗传原因。作为第一种范式的队列级方法,这将通过罕见的变性性共济失调研究的用例证明,这是一种疾病群,该疾病群高度富含遗传原因。个人陈述
在本研究中使用了二十九个手指小米基因型,包括六个检查,即VL324,VL347,VL348,VL352,VL315和VL149,用于估计遗传多样性。这项研究揭示了所有十四个特征的基因型差异高度显着。方差系数在4.62%至14.41%之间变化。谷物的收益率显示最高的GCV(37.33%)和PCV(40.02%),其次是每个图GCV(26.21%)和PCV(29.75%)的生物产量。在1000颗谷物的重量,每图谷物的产量,天数至50%的开花和每图生物学收益率中观察到高遗传力以及高遗传进展。使用Mahalanobis d 2统计,将所有29种手指小米基因型的基因型分类为8个非重叠簇。群集I和群集VIII具有最大的群集间D值(19.80),其次是群集I和群集VII(18.72)。1000粒重量对总差异贡献最大。
动物在其胃酸睾丸区内具有多种微生物群落。系统发育关系,饮食,肠道形态,宿主生理学和生态学都影响动物进化枝内和之间的微生物组组成。新兴的证据指出了宿主遗传学,同时在确定物种内的肠道微生物组成方面也发挥了作用。在这里,我们讨论了各种动物物种微生物组遗传力的最新进展。候选基因和基于发现的研究 - 小鼠,果蝇,Caenorhabditis秀丽隐杆线虫,牛,猪,家禽和狒狒揭示了可遗传的微生物类型的趋势,以及与塑造微生物组相关的宿主基因和途径。可遗传的肠道微生物在宿主物种中往往受到系统发育的限制。免疫和生长相关基因中的宿主遗传变异驱动肠内这些可遗传的细菌的丰富性。迄今为止,只有一小片生命之树的后生分支,这是一个有机会散发出寄宿机制的机制,这是一个领域。
亨廷顿氏病(HD)是一种遗传神经退行性疾病,其首次症状可以出现在寿命的不同点。重要的是,疾病的年龄与与疾病有关的突变长度密切相关,该突变的长度是Hungtingtin基因(HTT)中的CAG三肽扩张[3,4]。发病年龄(AO)的基因检测和临床预测都取决于这种扩张的长度。尽管如此,这并不是一个完美的预测因子,因为特定CAG重复长度的AO的标准偏差很大,特别是用于短膨胀(图1)。膨胀长度占AO变异性的40-70%,而其余方差显示出高度的遗传力[8,11]。在过去的二十年中已经进行了大型遗传研究,并且在寻找疾病发作过程中涉及的AO,基因或遗传因素的遗传修饰剂时仍在进行中,这是通过加速或延迟运动的出现而进行的。
注意力缺陷/多动症(ADHD)是一种异质性神经发育状况,同事疾病的患病率很高,导致长期管理的难度增加。全基因组关联研究已经确定了多动症与共同出现的精神疾病之间共享的变异。但是,遗传机制尚未完全理解。这项研究将基因表达和空间组织数据纳入了胎儿和成人皮质组织中预测的因果ADHD基因的两样本的孟德尔随机化研究。他们鉴定了四个基因在皮质组织中的ADHD因果关系(胎儿:ST3GAL3,PTPRF,PIDD1;成人:ST3GAL3,TIE1)。蛋白质 - 蛋白质相互作用数据库与因果ADHD基因播种的生物学途径,将这些基因与条件联系起来(例如类风湿关节炎)和生物标志物(例如淋巴细胞计数)已知与ADHD相关,但没有先前显示的遗传关系。在成年肝组织上重复进行分析,在成年肝组织中,预定的因果ADHD基因ST3GAL3与胆固醇性状相关。研究得出的结论是,该分析提供了对ADHD,同时存在性状和生物标志物之间组织依赖性的时间关系的见解。重要的是,它提供了先前研究和未研究的同时存在条件之间的遗传相互作用的证据。该研究对该领域的关键贡献是,鉴定ADHD的促成因果关系的基因,并以组织和时间依赖性的方式显示其生物学途径如何与共同存在的性状和生物标志物联系起来。评论,这是一项真正令人印象深刻的综合研究,使用了高级方法,及时且描述了,具有多种优势,作者也详细介绍了一些局限性。值得突出显示并在下面进行详细介绍。作者在研究ADHD的基本遗传学方面的重要工作受到赞扬,该遗传学的遗传力为74%,大约三分之一的这种遗传力来自普通变体。是针对其他复杂多基因性状的观察到的,许多已鉴定的SNP都在基因组的非编码区域及其对ADHD发展和与共同发生性状的相互作用的影响(S)尚不清楚。因此,在这项研究中,作者询问了一个问题,即他们是否可以通过将它们整合到胎儿和成人脑特异性染色质染色质相互作用和EQTL数据的分析中来识别因果ADHD基因,以便理解为发展ADHD及其共同性性状的个人风险。
可遗传的免疫是通过将免疫直接嵌入传播人类病原体的野生物种的基因组中来控制传染病的一种有希望的方法。在这里,我们报告了Mus Musculus的基因工程,以产生一种中和保护性的单链抗体,以抗莱姆病的病原体Borrelia Burgdorferi。工程小鼠稳定地产生了多代LA-2 SCFV-α-α融合蛋白,表现出强大的遗传力和基因表达的稳定性。在感染和未感染的tick虫下进行顺序挑战后,杂合小鼠对感染表现出强烈的抵抗力,有效地中断了Borrelia burgdorferi疾病传播周期。最近建立了新颖的方案,以基因设计白脚小鼠,莱索普斯(Peromyscus leucopus)是莱姆病的关键储层,这些发现表明,可行性免疫是缓解环境中莱姆病的潜在策略的可行性。更广泛地,工程化的储层免疫力可以提供一种可概括的方法来控制媒介传播和人畜共患病,具有改善人类健康的巨大潜力。
白质区构成了大型大脑网络的结构基础。,我们将脑部全面的拖拉术应用于30,810名成年人(英国生物银行)的扩散图像,并发现90个节点级别和851个边缘级网络连接度量的遗传力显着。多元基因组的关联分析鉴定了325个遗传基因座,其中80%以前与脑指标没有相关。富集分析涉及神经发育过程,包括神经发生,神经分化,神经迁移,神经投射引导和轴突发育,以及产前脑表达,尤其是在干细胞,天文细胞,小细胞,小胶质细胞和神经元中。多元关联概要文件牵涉到31个基因座,这是左眼语言网络核心区域之间的连通性。的精神病,神经系统特征的多基因评分也显示出与结构连通性的显着多元关联,每种都暗示了与特征相关的功能曲线的不同大脑区域集合。这项大规模的映射研究揭示了对人脑结构连接的变异的共同遗传贡献。
与精神疾病相关的大多数遗传变异位于基因组的非编码区域。为了调查其功能含义,我们整合了来自Psychencode联盟和其他已发表来源的表观遗传数据,以构建候选脑部顺式调节元素的全面地图集。使用深度学习,我们对这些元素的序列语法进行了建模,并预测谱系特异性文字因子的结合位点如何有助于各种类型的神经胶质和神经元中细胞类型特异性基因调节。元素的进化史表明,大脑中的新调节信息主要是通过保守的哺乳动物元素中的较小序列突变出现的,而不是全新的人类或灵长类动物特异性序列。然而,灵长类动物特异性的候选元素,尤其是在胎儿脑发育和兴奋性神经元和星形胶质细胞中活跃的元素,与脑相关的人类性状的遗传力有关。此外,我们介绍了一个基于Web的平台PsychScreen,该平台可在患有精神疾病和健康控制的个体中各种脑细胞类型的精神码产生的遗传和表观遗传数据的交互式可视化。
医学基因组学的一个主要挑战是要了解为什么患有相同疾病的人有不同的临床症状,以及那些携带相同突变的人可能会受到不同疾病的影响。在每种复杂疾病中,确定不同遗传和非遗传危险因素的贡献是理解疾病机制的关键障碍。遗传研究依赖于精确的表型,并且在表型不精确时无法发现对疾病的遗传贡献。为了应对这一挑战,已经开发了深厚的表型队列,以收集详细的细粒度数据。这些队列帮助我们调查潜在的生物学途径和危险因素,以识别治疗靶标,从而推进精度医学。神经退行性疾病帕金森氏病具有多样的表型表现和适度的遗传力,其潜在的疾病机制仍在争论中。因此,已经做出了大量努力,为这种疾病开发了深刻的表型队列。在这里,我们专注于帕金森氏病,并探讨如何深入的表型可以帮助应对遗传和表型异质性提出的挑战。我们还讨论了数据收集和计算的最新方法,以及必须克服的方法学挑战。