引言 在全球人口不断增长和气候变化的时代,粮食安全是人类生存和繁荣的主要目标之一 (Sekaran et al. , 2021)。作物改良是实现这一目标的核心战略之一。它包括提高产量和提高植物可食用部分的质量。事实证明,通过增加蛋白质和植物次生代谢物等必需成分的浓度来提高食品质量,对植物本身和食用这些植物的人类都有益 (Sahu et al. , 2022)。研究人员通过实验证实,作物改良与蛋白质含量提高之间存在相关性 (Chakraborty et al. , 2010; Zhang et al. , 2018a; Akbar et al. , 2023)。粳稻品种的蛋白质含量与氮和钾含量之间存在高度显著的正相关性 (Zhang et al. , 2018a)。同样,在
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2025 年 1 月 29 日发布。;https://doi.org/10.1101/2025.01.29.635411 doi:bioRxiv 预印本
对方差的分析显示,除了二级分支的数量,中间叶片的叶柄长度,平均胶囊宽度和平均胶囊厚度外,所研究的22个字符的种质之间存在显着差异。这表明大多数研究字符的种质中存在许多遗传变异。高遗传力与植物高度,初级分支,上叶的长度,开花的天数,天数到50%开花的天数,豆荚轴承区,每株植物的种子产量和细菌斑点反应记录了高遗传进展,表明这些特征是由添加基因效应控制的,从而有效地选择了这些字符的特征,可以进一步繁殖。这项研究中获得的结果将通过繁殖和保存芝麻遗传资源来促进气候友好的芝麻品种的改善。
人们认为,影响人体神经发育的罕见疾病几乎全部源于严重扰乱基因功能的罕见基因突变。这些突变对生物系统和发育有很大影响,因此对个体的特征和患病风险有极大影响。相比之下,罕见疾病被认为不是由常见基因变异引起的,常见基因变异的影响往往要小得多。在第 404 页,Huang 等人 1 揭示了与精神疾病和认知特征相关的常见基因变异会大大增加罕见神经发育疾病的风险。在先前研究 2 的基础上,Huang 和同事分析了 11,000 多名患有罕见神经发育疾病的人和大约 26,000 名未患此病的个体的基因组。作者研究了来自两个英国计划的基因组数据:解密发育障碍研究 3 和英国基因组学组织的十万人基因组计划 4 。通过分析整个基因组中的常见遗传变异,作者证实,常见变异总共占这些疾病风险或遗传性的约 10%。尽管作者的样本量对于全基因组常见变异分析来说相对较小,但他们精心设计的研究得出了一系列与临床医生和罕见神经发育疾病患者家属都相关的发现。作者证实,这些罕见疾病符合“责任阈值”模型 5 。该模型提出,遗传变异的组合——通常具有较大影响的罕见变异,或通常具有较小影响的常见变异——以及环境和社会因素,会增加达到患病“阈值”的风险。患有被证实为单基因(由单个基因突变引起)的神经发育疾病的个体具有较少的罕见神经发育常见遗传变异
学生在学习变异材料时存在误解和困难,导致学生的理解力和学习成果下降。教师在促进学生学习方面发挥着非常重要的作用。教师应该能够设计和使用适当的模型、方法和媒体,以便有效地进行学习,例如抽象材料或不能直接观察的材料的性质,包括突变和进化的概念。本研究的目的是将学习突变和遗传变异中的重要概念以复杂性和抽象性的形式映射出来,以理解生物进化的材料。本研究采用文献研究法。在查阅了各种文献后,对突变和基因变异的概念进行了识别和分析。因此,它可以作为教师设计学习的参考。 CoRe 中出现的一些大思想包括导致突变的因素、突变的类型、突变的影响以及遗传变异、突变、物种形成和生物多样性之间的关系,是概念化一个主题的一些重要考虑因素,在向学生传授材料的深度和广度时,教师仍然可以根据学生的学习环境条件对材料进行调整。学习必须考虑到学生和教师的条件,因此方法、模型、媒体和方法的使用在很大程度上决定了教授生物进化这一抽象课程的成功。
b“总结大脑的纯粹复杂性使我们了解其在健康和疾病中功能的细胞和分子机制的能力。全基因组关联研究发现了与特定神经系统型和疾病相关的遗传变异。此外,单细胞转录组学提供了特定脑细胞类型及其在疾病期间发生的变化的分子描述。尽管这些方法为理解遗传变异如何导致大脑的功能变化提供了巨大的飞跃,但它们没有建立分子机制。为了满足这种需求,我们开发了一个3D共培养系统,称为IASEMBLOI(诱导的多线组件),该系统能够快速生成同质的神经元-GLIA球体。我们用免疫组织化学和单细胞转录组学表征了这些Iassembloid,并将它们与大规模CRISPRI的筛选结合在一起。在我们的第一个应用中,我们询问神经胶质细胞和神经元细胞如何相互作用以控制神经元死亡和生存。我们的基于CRISPRI的筛选确定GSK3 \ XCE \ XB2在存在高神经元活性引起的活性氧的存在下抑制了保护性NRF2介导的氧化应激反应,这先前在2D单一神经元筛选中没有发现。我们还应用平台来研究ApoE-4的作用,APOE-4是阿尔茨海默氏病的风险变体,对神经元生存的影响。与APOE-3-表达星形胶质细胞相比,表达APOE-4表达星形胶质细胞可能会促进更多的神经元活性。该平台扩展了工具箱,以无偏鉴定大脑健康和疾病中细胞 - 细胞相互作用的机制。 “
自 20 世纪 20 年代以来,诱发突变就已用于作物育种。目前,联合国粮食及农业组织 (FAO) 和原子能机构管理的数据库中记录了 3400 多种突变作物品种。通过改进和调整优化突变密度的技术,可以提高作物品种育种的有效性。这还涉及提高筛选大量突变种群或品系的效率,无论是表型还是基因型。鉴于这些目标,粮农组织/原子能机构粮食和农业核技术联合中心启动了一项为期五年的协调研究项目,题为“通过诱发突变育种提高水稻和高粱的抗旱能力”。该项目汇集了发达国家和发展中国家的研究人员,旨在通过诱发突变提高水稻和高粱种质的抗旱能力,并开发和调整筛选技术,以实现可持续粮食安全。
1 华盛顿大学儿科系遗传医学分部,美国华盛顿州西雅图 98195;2 华盛顿大学分子与细胞生物学项目,美国华盛顿州西雅图 98195;3 华盛顿大学基因组科学系、4 实验室医学与病理学系,美国华盛顿州西雅图 98195;5 华盛顿大学公共卫生遗传学研究所,美国华盛顿州西雅图 98195;6 南非约翰内斯堡 2193 威特沃特斯兰德大学健康科学学院悉尼布伦纳分子生物科学研究所;7 太平洋西北研究所,美国华盛顿州西雅图 98122;8 纽约大学生物系,美国纽约州纽约 10003;9 Alamya Health,美国路易斯安那州巴吞鲁日 70806; 10 应用和转化神经基因组学组,VIB 分子神经病学中心,VIB,安特卫普 2650,比利时;11 安特卫普大学生物医学科学系,安特卫普 2000,比利时;12 美国国家标准与技术研究所材料测量实验室,马里兰州盖瑟斯堡 20899,美国;13 田纳西大学健康科学中心遗传学、基因组学和信息学系,田纳西州孟菲斯 38163,美国;14 人类科技城,意大利米兰 20157;15 约翰霍普金斯大学计算机科学系,马里兰州巴尔的摩 21218,美国;16 墨西哥国立自治大学国际人类基因组研究实验室,人类基因组国际研究实验室,墨西哥城 76230,墨西哥; 17 纽约基因组中心,纽约,纽约州 10013,美国;18 Outlier Informatics Inc.,萨斯喀彻温省萨斯卡通 S7H 1L4,加拿大;19 西雅图儿童医院实验室部,华盛顿州西雅图 98195,美国;20 冷泉港实验室,纽约冷泉港 11724,美国;21 斯坦福大学遗传学系,22 计算机科学系,加利福尼亚州斯坦福 94305,美国;23 贝勒医学院人类基因组测序中心,德克萨斯州休斯顿 77030,美国;24 贝勒医学院分子和人类遗传学系,德克萨斯州休斯顿 77030,美国;25 莱斯大学计算机科学系,德克萨斯州休斯顿 77251,美国; 26 美国国立卫生研究院国家癌症研究所癌症数据科学实验室,马里兰州贝塞斯达 20892,美国;
土著藏族已经开发了自适应生理机制,以应对Qinghai-Xizang高原的低氧环境。据报道,与缺氧诱导因子途径相关的内皮PAS蛋白1基因(EPAS1)内的遗传变异与藏族之间的低氧适应性有关。大脑在体内表现出最高的氧气消耗,特别容易受到高空缺氧的影响。我们研究了Qinghai-Xizang高原中藏族的结构和功能性脑网络的遗传影响。在这项研究中,招募了135名年轻土著藏族(62名男性和73名女性)作为实验组。 65名与相关特征相匹配的低地汉族人被招募为遗传变异分析的对照组。基于先前的报道,选择了EPAS1中的12个单核苷酸多态性基因座进行基因分型。随后,使用磁共振成像(MRI)获得了大脑的T1结构和静止状态功能图像。单倍型分析表明,藏族中GA和CAAA单倍型的频率明显高于低地汉族个体。藏人被认为是更高的适应性。因此,藏族被归类为遗传适应的藏族(GHA-tibetans)和遗传适应性较低的藏人(GLA-tibetans)。自适应的大脑变化也参与了自发的休息状态活动网络。与Gla-tibetans相比,Gha-tibetans在左中央回和右侧毛氨酸回去,右侧额叶和右后扣带回回去的皮质表面积明显更大,在左PericalCarine Gyrus和右PericalCarine Gyrus和右上角的皮质体积中,右侧额叶和右后扣回去。在多个网络中观察到功能连接显着提高,包括体育体网络,腹侧注意网络,视觉网络和默认模式网络。这项研究揭示了EPAS1遗传变异与土著藏族中大脑结构和功能网络的适应性之间的关系,表明大脑的适应性变化主要集中在与视觉感知,运动控制和相关功能网络相关的区域上。这些大脑变化可能有助于土著人口在极端环境中更好地调节其身体活动。
