摘要:Trichostatin A(TSA)是一种代表性的组蛋白脱乙酰基酶(HDAC)抑制剂,该抑制剂通过调节细胞中的染色质重塑来调节表观遗传基因的表达。调查TSA对染色质DE稳态的调节是否会影响Cas9蛋白 - 蛋白 - 核核糖核蛋白(RNP)的效率提高,从植物细胞中检查了基因组编辑的基因组,使用生菜和烟草原子量进行了多种浓度,在几次浓度的TSA治疗后(tsa)(0.1)(0.1)(0.1和10,0.1)。RNP从原生质体递送。有趣的是,在莴苣原生质体中,TSA处理中SOC1基因的indel频率是DMSO处理的3.3至3.8倍。尽管没有太大差异,但糖基因原生质体中SOC1基因的indel频率的增加发生在浓度依赖性的方式中。类似于生菜,TSA在PDS基因组编辑期间使用烟草原生质体以浓度依赖性方式将indel频率提高了1.5至1.8倍。MNase测试清楚地表明,使用TSA处理的染色质可及性高于DMSO治疗的染色质。此外,TSA处理显着提高了生菜原生质体的组蛋白H3和H4乙酰化水平。QRT-PCR分析表明,通过TSA处理,增加了细胞分裂相关基因的表达(LSCYCD1-1,LSCYCD3-2,LSCYCD6-1和LSCYCU4-1)。这些发现可能有助于提高CRISPR/CAS9介导的基因组编辑的效率。此外,这可以应用于使用带有植物原生质体的CRISPR/CAS9系统开发有用的基因组编辑的作物。
母亲反对脱皮性同源物4(SMAD4)是介导TGF-β信号转导的Smad转录因子家族的成员。SMAD4功能突变或缺失的丧失在约30%的胰腺导管腺癌(PDAC)和大肠癌腺癌和食管腺癌患者的15%,并且与预后不良有关。在过去的二十年中,其肿瘤抑制作用的作用已被阐明,SMAD4的损失足以促进多种GEM模型中的肿瘤发生。为了识别SMAD4缺陷癌的新型治疗脆弱性,在SMAD4等源性PDAC模型中采用了CRISPR辍学方法。我们将stearoyl-COA去饱和酶SCD鉴定为Smad4缺陷型环境中的合成致命靶标。scd对于从头脂质生物发生至关重要,并催化单不饱和脂肪酸的产生速率限制步骤。体外遗传学和药理学研究证实了这种合成的致命关系。此外,药物锚定的CRISPR辍学筛选和RNA表达分析表明,饱和脂肪酸对SCD抑制作用的积累驱动SMAD4缺陷细胞中的细胞毒性。用基于CRISPR的SCD敲除和特征良好的SCD抑制剂(A939572)的小鼠研究表明,SMAD4-突变异种移植模型中具有抗肿瘤功效。但是,与SCD的遗传基因敲除(KO)相比,药理学抑制剂在抑制体内肿瘤增殖方面的有效性较小。一起,这些数据将SCD识别为SMAD4突变癌中的选择性漏洞。
2018年底,基因改造双胞胎露露和娜娜诞生了。他们的DNA甚至在胚胎阶段就被修改了。这种行为是现行法律法规所禁止的,包括中国在内。然而,研究员贺建奎在实验室中使用了新的 CRISPR-Cas9 技术来修改婴儿的遗传基因;这被称为种系改造。人类的这种基因增强引发了许多伦理、道德和实际问题。我们对此有何看法?将其合法用于医疗目的是否能给我们带来根除遗传性疾病的希望?我们能为子孙后代做决定吗?我们所能接受的底线在哪里?拉特瑙研究所等 11 个组织主动就这些问题发起了社会对话。基于文献研究、访谈和情景研讨会,我们概述了历史和国际背景、迄今为止的讨论以及发挥作用的社会和道德考虑。关于修改遗传 DNA 的讨论是关于我们希望给予生物技术改进的空间的更广泛讨论的一部分。我们是否了解新技术的后果和风险?它们如何改变我们对美好健康生活的形象及其界限?新技术发展各有特点,但也引发反复出现的问题。在“创造生命”这一主题下,我们对胚胎研究、人与动物结合以及生殖系改造的发展进行了研究。这一次又一次地表明,追求可行性也会使人们变得脆弱。为了确保有关修改遗传 DNA 的社会和政治辩论考虑到不同的观点和价值观,我们列出了最重要的考虑因素和论点。本报告包含有关该主题的广泛社会对话的内容和形式的十节课。因为出于对当代和后代的关心,非常谨慎地、共同地进行这一对话至关重要。自2019年10月起,全国各地的所有人都可以参加会议。
同种异体细胞免疫疗法(将健康供体的免疫细胞注入患者中)由于其成本效益,可伸缩性和点播可用性而有可能彻底改变癌症治疗。然而,同种异体细胞的免疫原性和有限的持久性仍然是实现这些疗法持续和稳健的抗肿瘤反应的重要障碍。一种解决同种异细胞免疫原性的常见策略是HLA分子的遗传基因敲除,这是向T细胞呈现抗原的表面蛋白,这有效地消除了T细胞介导的排斥反应。然而,这些HLA分子的丢失通过缺失自然识别而被宿主自然杀手(NK)细胞触发了排斥。因此,有必要将靶向NK细胞的免疫调节策略与HLA敲除,以便充分保护同种异体细胞免受宿主免疫系统的影响。在本次研讨会中,我首先证明,敲除免疫突触中的关键粘附配体,特别是ICAM-1和CD58,广泛保护了同种异体IPSC衍生的NK细胞免受宿主NK细胞介导的抑制的抑制。然后,我将讨论如何将这种方法扩展到Adapt NK细胞平台,这是一种高度细胞毒性的,由体内扩展的原发性NK细胞平台,该平台有助于进入临床试验。在这种情况下,我通过将基于microRNA的SHRNA掺入嵌合抗原受体(CAR)质粒中,开发了一种单发方法来敲击粘附配体敲低,从而可以同时增强适应性NK细胞功能和对异常的耐药性。我将通过概述我对未来实验室的愿景来结束研讨会,我的目标是将我在NK细胞工程中的专业知识与我的生物材料背景相结合,以开发下一代NK细胞疗法,以治疗实体瘤和免疫介导的疾病。
如果要在气候变化的背景下满足世界对粮食和饲料生产的需求,就必须继续了解和利用作物变异的遗传和表观遗传来源。传统上,人们认为植物育种的进步是由于选择了赋予理想表型的自发 DNA 序列突变。这些自发突变可以扩大表型多样性,育种者可以从中选择农学上有用的性状。然而,很明显,即使基因组序列没有改变,也可以产生表型多样性。表观遗传基因调控是一种在不改变 DNA 序列的情况下调控基因组表达的机制。随着高通量 DNA 测序仪的发展,分析整个基因组的表观遗传状态(称为表观基因组)已成为可能。这些技术使我们能够高通量地识别自发表观遗传突变(表观突变),并识别导致表型多样性增加的表观突变。这些表观突变可以产生新的表型,而致病表观突变可以代代相传。有证据表明,所选的农艺性状受可遗传的表观突变所制约,而育种者可能历来都会选择受表观等位基因制约的农艺性状。这些结果表明,不仅 DNA 序列多样性,而且表观遗传状态的多样性都可以增加表型多样性。然而,由于表观等位基因的诱导和传播方式及其稳定性与遗传等位基因不同,传统定义的遗传的重要性也不同。例如,对作物育种和作物生产重要的表观遗传类型可能存在差异。前者可能更多地依赖于长期遗传,而后者可能只是利用短期现象。随着我们对表观遗传学理解的不断进步,表观遗传学可能为作物改良带来新的视角,例如在育种中使用表观遗传变异或表观基因组编辑。在这篇评论中,我们将介绍表观遗传变异在植物育种中的作用,主要关注 DNA 甲基化,最后询问表观遗传学在作物育种中的新知识在多大程度上导致了其成功应用的记录案例。
通过使用基因组编辑和稳定植物转化技术,开发将高粱基因与表型联系起来的基因组水平知识库以实现生物能源目标,对于理解基本生理功能和作物改良至关重要。我们与参与该项目的各个实验室一起贡献中央枢纽能力,以创建、测试和培育转基因和基因组编辑植物。我们已经建立了可靠的协议,用于通过农杆菌介导将实验性遗传构建体引入高粱 cv BTx430,并合作生成该项目正在进行的研究所需的可行转基因。这些实验包括:; (1) 用于敲低的高粱 RNAi 构建体,例如电压门控氯离子通道蛋白、α碳酸酐酶 7 (CA) 和 9-顺式环氧胡萝卜素双加氧酶 4 以及 myb 结构域蛋白 60; (2) 构建体用于测试磷酸烯醇丙酮酸羧化酶 (PEPC) 启动子表达、CA 过表达和具有改变动力学的 PEPC 的保真度;(3) 旨在测试一系列增加的叶肉 CA 活性的 CA 过表达的其他版本;(4) Ta Cas 9、dTa Cas9 和 dCas9 转录激活因子用于改进编辑,以及;(5) 构建体用于评估转基因过程的改进,旨在增加转化频率并缩短 T1 种子的时间。这些品系目前处于转基因过程的不同阶段。使用形态发生调节剂介导的转化 (MRMT) 的最新发展是实现快速转化和基因组编辑的突破。我们报告了一种使用 MMRT 技术的改进的快速转化方法的开发,该方法有可能增加我们的项目的吞吐量并缩短时间。与 Voytas 实验室合作,我们评估了 MRMT 载体的公共版本。 Voytas 实验室还在测试递送基因组编辑试剂的新方法,特别是使用 RNA 病毒载体通过感染递送 gRNA。通过感染进行可遗传基因编辑已在多个双子叶植物中实现,我们正在努力在狗尾草和高粱中实施该技术。
最近的一些评论似乎将线粒体捐赠与一系列术语(如生殖系基因改造/改变和生殖系基因编辑)混为一谈。这是不正确且具有误导性的。国际上已暂停生殖系基因编辑。该技术涉及切割核 DNA 或线粒体 DNA,当应用于非生殖系组织时,有望治疗某些遗传疾病。但是,目前该技术还不够成熟且效率低下,不能被视为安全有效的生殖系疗法。线粒体捐赠与基因编辑和其他形式的生殖系基因改造截然不同,因为它不会切割或修改 DNA,而是在不改变其所含线粒体 DNA 的情况下替换整个线粒体。在英国,人类受精与胚胎学管理局在一系列四次科学审查以及纳菲尔德生物伦理委员会的一次审查中考虑了这些区别。英国议会得出结论,线粒体捐赠不是种系基因改造,并于 2015 年修改了立法,允许向有高风险传播线粒体 DNA 疾病的父母提供线粒体捐赠。这项工作以严格的监管方式进行。在美国等一些国家,线粒体捐赠被称为线粒体替代疗法 (MRT)。美国国立卫生研究院 (NIH) 委托医学研究所进行了一项题为《线粒体替代技术:伦理、社会和政策考虑》的审查。该审查特别考虑了线粒体捐赠是否应被视为种系基因改造,并指出了线粒体 DNA 改造和核 DNA 在技术、性状和增强潜力方面的重大区别。他们在 2016 年的报告中得出结论:“这些区别可以独立于有关核 DNA 可遗传基因改造的决定,为 MRT 提供依据”。 2021 年,国际干细胞研究学会 (ISSCR) 发布了干细胞研究和临床转化的新指南。ISSCR 指南不建议进行可遗传基因组编辑(即切割和修复单个核或线粒体 DNA 基因),但该学会代表在最近参议院对 2021 年线粒体捐赠法改革(梅芙法)法案的调查中明确表示,他们支持在适当情况下使用线粒体捐赠,并且梅芙法中设想和概述的监督和用途与他们的指南一致。例如,ISSCR 指南包括:
_____________________________________________________________________ 遗传因素被认为在健康和疾病的几乎每个方面都发挥作用。我们对这些遗传影响的了解正在增加,我们检测它们的能力也在增加。许多人对使用基因测试感兴趣。基因测试可用于医疗和非医疗目的,以确定祖先、预测药物敏感性、预测患上特定疾病和将这种易感性遗传给孩子的可能性,以及在肿瘤学环境中检测获得性基因变化,这可能有助于确定预后或治疗。 用于医疗目的的基因检测 基因测试结果可能对健康产生重大影响,不仅对接受测试的个人,而且在检测可遗传基因变化时也可能对其亲属产生重大影响。 澳大利亚皇家病理学家学院 (RCPA) 强烈主张,复杂的医疗测试应始终由经验丰富的医生或其他具有适当资格的医疗从业人员提出,并与他们讨论。这种方法适用于所有医疗测试。它对于预测儿童医疗未来的复杂基因测试尤其重要。将与重大临床问题有关的基因检测直接推销给患者并不合适。(RCPA 关于 DTC 的媒体发布 - 2018 年 7 月)此外,一些基因检测可能会产生复杂的结果,对某些人产生深远的影响。NPAAC 提供了将基因检测分为两个级别的指导:1 级(“标准”)检测和 2 级(“可能导致复杂临床问题”)检测。2 级基因检测需要特定的书面同意,并且与咨询问题相关,需要有适当经验的医疗专家或接受过专门培训提供基因咨询的人员(例如基因咨询师)的参与......(NPAAC 对人类核酸医学检测的要求 2013)非医疗目的的基因检测一些基因检测也可用于非健康目的,例如远亲测试或生活方式或行为特征(见上文的分类表)。如果这些类别的测试不涉及医学,则无需医疗或保健从业人员参与,并且可以通过多种途径进行此类测试,其中一些可能是直接面向消费者 (DTC)。(NHMRC 医学基因检测指南 https://www.nhmrc.gov.au/about-us/publications/medical-genetic-testing-information-health- professionals
摘要(250个单词)微生物使用来自几个不同分子家族之一的氟化物导出蛋白抵抗氟化物毒性。致癌物种链球菌突变和白色念珠菌分别使用CLC F F - /H +抗替代剂和Fex氟化物通道挤出了细胞内氟化物,而使用FlucCoccus gordonii,使用Flucococcus gordonii,使用Fluccoccus flucorty使用氟化氟化物。在这项工作中,我们研究了氟化物出口的遗传敲除如何影响单物种和三种牙科生物膜模型中的病原体适应性。用于使用CLC F转运蛋白的遗传敲除的生物膜生成的生物膜,暴露于氟化物较低的浓度降低了链球菌的数量,协同降低了白色念珠菌的种群,增加了恒定链球菌的相对比例,并降低了与生物含量降低的生产和HySyDrot的酸性生产和HySydrot的相关性能。生物膜具有FEX通道的遗传敲除,在氟化物存在下也表现出降低的适应性,但程度较小。成像研究表明,链球菌对氟化物高度敏感,当敲除菌株暴露于低氟化物的情况下,在适度的时间内进行完全裂解,并且生化纯化链球菌Clc f转运蛋白clc f转运蛋白和功能重新构造确立了功能性蛋白质是由单个基因编码的功能蛋白。一起,这些发现表明,特定抑制剂可以针对口腔病原体的氟化物出口,以恢复牙齿生物膜中的生物膜共生,并且链球菌链球菌特别容易受到氟化物毒性的影响。重要性(150个单词):龋齿是一种全球盛行的疾病,发生在牙科生物膜中的病原体物种(包括链球菌变异物和白色念珠菌,诸如gordoccoccus gordoniii)之类的抗蛋白质有益物种时。氟化物通常用于口腔卫生中以防止龋齿。氟化物也具有抗菌特性,尽管大多数微生物具有氟化物出口商可抵抗其毒性。这项工作表明,通过氟化物出口商的遗传基因敲除改变牙齿生物膜的微生物组成和致病性能,致氟化链球菌和白色念珠菌对氟化物的敏感性。这些结果表明,抑制氟化物出口商的药物的开发可以增强氟化物在牙膏和嘴里冲洗等非处方产品中的抗性效果。这是治疗龋齿的新型策略。关键词:生物膜,社区,牙科,转运蛋白,氟化物,致病性,龋齿,CLC,CRCB,FLUC
具核梭杆菌是一种存在于口腔微生物群中的革兰氏阴性厌氧杆菌,与结直肠癌有关 ( 1 , 2 )。结直肠癌是全球第三大常见癌症,也是癌症相关死亡的第二大原因。近年来,具核梭杆菌因其在结直肠癌发展中的潜在作用而备受关注 ( 3 , 4 )。多种风险因素都会影响癌症的发展,包括年龄、家族病史、遗传基因(如林奇综合征和家族性腺瘤性息肉病)、炎症性肠病个人病史(如克罗恩病或溃疡性结肠炎)、肥胖、缺乏运动、吸烟、大量饮酒、富含红肉和加工肉类而纤维含量低的饮食。研究表明,饮食模式在结直肠癌的发展中起着重要作用 ( 5 )。通过经验性饮食炎症模式 (EDIP) 评估确定的某些饮食与肠道炎症增加和 F. nucleatum 阳性结直肠癌风险增加有关 (6)。饮食引起的肠道炎症会改变肠道微生物群,促进结直肠癌的发生。大量食用红肉和加工肉类与结直肠癌风险增加有关,这可能是由于硝酸盐、亚硝酸盐和杂环胺等致癌物所致 (7)。饮食习惯和抗生素使用等环境因素也可能影响 F. nucleatum 在结肠中的行为。另一方面,肠道微生物在启动和促进结直肠癌发展中的作用也越来越被人们所了解。肠道微生物群与结直肠癌之间存在复杂的关系。最近的研究已发现溶没食子酸链球菌、产肠毒素脆弱拟杆菌、具核梭杆菌和大肠杆菌是与结直肠癌相关的潜在病原体 (8)。尽管肠道菌群因人而异,但某些细菌种类一直与结直肠癌有关。据报道,溶没食子酸链球菌是一种革兰氏阳性球菌,是 CRC 的危险因素 (9)。产肠毒素脆弱拟杆菌 (ETBF) 会产生脆弱拟杆菌毒素 (BFT),已知会引起腹泻并导致炎症性肠病 (IBD) (10)。类似地,研究发现,与健康个体相比,肠道共生菌大肠杆菌在结直肠癌患者的结肠中定植的水平更高 ( 11 , 12 )。然而,对这些风险因素的反应可能因种族和地理位置而异,从而影响 CRC 的分布和预后。尽管具核梭杆菌是人类口腔的常见菌,但其在 CRC 患者的结直肠肿瘤和邻近组织中的丰度较高 ( 13 , 14 )。一些研究表明具核梭杆菌与 CRC 之间存在潜在联系 ( 1 , 15 )。据报道,这种细菌在临床前模型中会促进炎症、削弱免疫反应、改变肿瘤微环境、促进化疗耐药性并促进肿瘤生长和转移 ( 16 , 17 )。此外,F. nucleatum 与 CRC 患者的预后不良有关 ( 18 )。F. nucleatum 在结直肠组织中的存在引起了人们对其作为诊断标记物或