摘要:猝死综合征(SIDS)是一岁以下婴儿意外死亡,经过彻底的调查,该死亡仍无法解释。尽管SIDS仍被诊断为具有无法解释的病因的诊断,但仍被广泛接受的是,SIDS可能是由环境和/或生物学因素引起的,具有多个潜在的候选基因。然而,缺乏生物标志物引发了关于为什么迄今为止对小岛屿发展中心的遗传研究无法更清楚地了解疾病病因的问题。我们试图通过审查SIDS遗传文献,并基于证据强度(从C1(高)到C5(低))来改善与SIDS相关基因的识别。接下来是功能分析,基因之间的关联,基因本体论(GO)术语的富集以及组织基因表达的途径和性别差异。我们构建了一个由109个基因组成的SIDS基因候选物的策划数据库,其中14个接受了4(C4)和95个基因的C5类别。没有将这些基因分为较高的类别表明支持证据的水平较低。我们发现,这两个评分类别的基因都表现出不同的网络,并且功能高度多样,并且与许多GO的术语和途径有关,与对SIDS作为异质综合征的看法一致。两种评分类别的基因是心脏系统,肌肉和离子通道的一部分,而免疫相关功能显示C4基因的富集。发现与神经发育有限的关联。总体而言,不一致的报告和缺失的元数据有助于遗传研究的歧义。考虑到这些参数可以帮助改善处于风险的SIDS基因的识别。但是,该领域仍然远非提供全面的基因检测来识别处于危险的婴儿,并且仍然受到对重要生物学机制脆弱性的方法论挑战和误解的阻碍。
视网膜发育和功能受复杂的遗传和基因组机制的控制,对这些过程的破坏会导致严重的视觉障碍和失明。遗传学和基因组学的进步大大增强了我们对视网膜生物学的理解,从而导致了视网膜疾病的新诊断和治疗方法。探索与视网膜疾病发作,开发视网膜模型系统,识别基本基因和遗传网络以及应用基于CRISPR的基因组编辑相关的遗传变异,对于推进这一领域至关重要。为了进一步在这一领域的知识,我们邀请专家撰写研究论文和关键评论,以解决这些关键领域。
1对真核生物中复杂基因调节网络的见解。2具有有关基因调节在正常生物学1过程中的作用的知识。3有关于在1种疾病期间发生的基因调节障碍和压力反应的知识。4讨论有关表观遗传过程的科学文献。5批判性地分析了有关描述技术的道德方面。
免疫功能低下的个体中的呼吸道合胞病毒(RSV)感染通常会导致长期疾病,发展为严重的下呼吸道感染甚至死亡。造血干细胞移植(HCT)成年人的宿主免疫环境如何影响急性感染期间的病毒遗传变异。在本研究中,我们从从正常(<14天)且延迟(≥14天)的RSV清除率的HCT成年人纵向收集的样品中对RSV/A或RSV/B进行了整个基因组测序。我们确定了RSV的宿主间和宿主内遗传变异以及突变对推定糖基化位点的影响。RSV的宿主变化以附着(G)和融合(F)糖蛋白基因为中心,然后是聚合酶(L)和矩阵(M)基因。有趣的是,RSV/A和RSV/B的正常清除组和延迟清除组之间的总体遗传变异是恒定的。主宿内变异主要发生在G基因中,然后是非结构蛋白(NS1)和L基因。但是,仅在G基因中出现或仅在延迟的病毒清除率组中出现终止密码子和移码突变的增益或丢失。G基因中O连锁糖基化位点的潜在增益或丧失发生在RSV/A和RSV/B分离株中。 对于RSV F基因,在抗原表位中的三个RSV/B分离株中,N连接的糖基化位点的丧失发生。 口服和雾化的利巴韦林都不会在L基因中引起任何突变。G基因中O连锁糖基化位点的潜在增益或丧失发生在RSV/A和RSV/B分离株中。对于RSV F基因,在抗原表位中的三个RSV/B分离株中,N连接的糖基化位点的丧失发生。口服和雾化的利巴韦林都不会在L基因中引起任何突变。总而言之,长时间的病毒脱落和免疫缺陷导致RSV变异,尤其是在G基因的结构突变中,可能与免疫逃避有关。因此,对免疫功能低下患者的RSV分离株进行测序和监测至关重要,因为它们可以产生逃生突变体,从而影响即将发生的疫苗和治疗的有效性。
简单的统计分析:数据收集和分析:样本,制表,图形表示,描述位置,扩散和偏斜。入门概率和分布理论。采样分布和中心极限定理。统计推断:单样本和两样本的基本原理,估计和测试(参数和非参数)。实验设计简介。一单和两次设计,随机块。多个统计分析:双变量数据集:曲线拟合(线性和非线性),生长曲线。简单回归案例中的统计推断。分类分析:测试拟合和应急表的优点。多重回归和相关性:模型的拟合和测试。剩余分析。计算机素养:在数据分析和报告写作中使用计算机软件包。
Elective modules Macromolecules of life: structure-function and bioinformatics 356 (BCM 356) - Credits: 18.00 Biocatalysis and integration of metabolism 357 (BCM 357) - Credits: 18.00 Cell structure and function 367 (BCM 367) - Credits: 18.00 Molecular basis of disease 368 (BCM 368) - Credits: 18.00植物生态生理学356(BOT 356) - 学分:18.00植物生态学358(BOT 358) - 学分:18.00植物医学365(BOT 365) - 信用:18.00植物多样性366(Bot 366)(Bot 366)(Bot 366) - 信用:18.00植物遗传学和植物生物学361(BTC 361)(BTC 361)(BTC 361)(BTC 361) Health 368(GTS 368) - 学分:18.00病毒学351(MBY 351) - 学分:18.00细菌遗传学355(MBY 355) - 信用:18.00 Microbes 364遗传操纵364(MBY 364)(MBY 364) - 信用:18.00 Microbe Intervoriates:18.00 Microbe Its Interactions 365(Microbe Intervorions 365(MBY 365)35.35 35 35 35 35 35 35 35 35 33 35 35 35 33 35(MMBY 35)(18.00)(18.00) - 18.35 35(MMBY 35) - 18.35(MBY 35)(18.00)(18.00)(18.00)学分:18.00植物疾病控制363(PLG 363) - 信用:18.00
1诺曼特,奥斯陆大学临床医学研究所,心理健康与成瘾司,奥斯陆大学医院,奥斯陆,奥斯陆2号,挪威2号,挪威2临床分子生物学研究所,基尔·阿尔布雷希(Kield of Kiel),基尔(Kiel),基尔(Kiel),基尔(Kiel),德国3神经疾病疾病研究单位,NeuroDegenerative疾病研究单位,NEUROLICAT DISORTION,NERUROLICAL DISORTORIC神经遗传学,美国国家卫生研究院,美国国家卫生研究院,美国马里兰州贝塞斯达5号5 BORDEAUX,BORDEAUX,BORDEAUX的MultisyStématisée8 Inserm,UMR1219,波尔多人口健康研究中心,波尔多大学,ISPed,Bordeaux,Bordeaux,法国9 Univ。de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Bordeaux, France 10 Centre de Reference Maladie Rare Atrophie MultiSystématisée, Centre d ' Investigation, Clinique CIC 1436, Services de Pharmacologie Clinique et Neurosciences, NeuroToul COEN Center, Toulouse, France 11 Centre医院 - Universitaire de Toulouse,3,Toulouse,Toulance,Toulance 12神经病学系3号医院,图卢兹大学医院,图卢兹大学医院和INSERM U 1048,心血管和代谢疾病研究所,图卢兹研究所,法国13法国第一医疗部,schleswig-Holstein,Biemany Instergute,Instermany Instergute基尔·基尔(Kiel),基尔(Kiel),基尔(Kiel),德国基尔(Kiel)15遗传流行病学研究所,HelmholtzZentrumMünchen-德国德国环境健康研究中心,德国Neuherberg,德国16遗传流行病学主席,IBE,IBE,IBE,LUDWIG-MAXIMILIAN-MAXIMILIAN-UNIVER INICHIAN-MUNANY INICH NUMINANICH MUNICH MUNICH,LMICHINICH,MUNICHINICH MUNICH,LMICH (心脏病学),路德维希 - 马克西利亚人 - 大学(LMU)慕尼黑,慕尼黑,德国慕尼黑18号神经病学系,德国格里夫斯瓦尔德大学医学系,德国格雷夫斯瓦尔德,199 20社区医学研究所,德国格里夫斯瓦尔德大学医学研究院/KEF,德国格里夫斯瓦尔德大学医学研究所21人类遗传学研究所,德国波恩,波恩大学22分子流行病学研究院
开始了许多药物发现项目,但是通过临床试验进行批准,很少有进展。先前的工作表明,人类遗传学对治疗假设的支持增加了试验进展的机会。在这里,我们应用了自然语言处理来对Freetext进行分类为28,842次临床试验的原因,这些临床试验在满足其终点之前停止了。然后,我们根据治疗假设和目标特性的基本证据评估了这些类别。我们表明,由于缺乏人类人群或遗传改性动物模型的强有力的遗传证据,试验更可能停止,因为缺乏疗效。此外,如果在人类种群中高度限制药物靶基因以及未选择性表达该基因,则由于安全原因而停止试验。这些结果支持人类遗传学在评估药物发现计划的靶标。
这项研究彻底讨论了常染色体显性或常染色体隐性变体患者的症状变异性,该基因编码蛋白质的蛋白质,这些蛋白质调节了肌醇 - 三磷酸酯受体降解的蛋白质。25。Fowler PC,O'Sullivan NC:运动神经元中的ER和线粒体网络组织需要ER成型蛋白。Hum Mol Genet 2016,doi:10.1093/hmg/ddw139。
简介:生物科学涵盖了一个研究生命和生物,它们的相互作用和过程的广泛研究领域。遗传学是生物科学中的主要领域之一,研究遗传,基因以及如何世代传播的特征。该领域对于理解各个领域,包括生物技术,医学,生态学和进化是基础。目标:这项研究的目的是探索遗传学的基本原理及其在生物科学中的影响。了解遗传物质(DNA/RNA)的结构和功能。分析遗传遗传及其定律的原理。回顾遗传研究中使用的现代工具和技术。方法论:采用的方法包括一种定性方法,对遗传学领域的科学文章,书籍和最新出版物进行了书目审查。经典作品已经进行了分析,例如Gregor Mendel的实验,以及使用DNA测序和基因组版等技术(CRISPR)的当代研究(CRISPR)。此外,文献在测序技术方面显示出很大的进步,这些技术允许基因组的完整映射和遗传版本,这为遗传疾病疗法打开了新的可能性。最近的研究还讨论了与这些技术使用有关的道德问题。结果:结果表明,了解遗传学对于医学上实际应用的发展至关重要,例如遗传性疾病的基因疗法和农业中的基因疗法,并创造了基因修饰的作物。遗传编辑技术(例如CRISPR)已被证明是精确的DNA操纵的强大工具。结论:生物科学中遗传学的研究为生命及其复杂性提供了宝贵的见解。随着这一领域的持续发展,道德和社会含义是要考虑的重要主题。遗传知识不仅增强了我们对生物学的理解,而且还提供了面对健康和可持续性挑战的工具。