在开创性研究和高吞吐测序的驱动的兽医病毒学进展中,显着扩展了我们对影响动物的病毒的理解,从家族到野生物种。通过高级测序技术的新型病毒数据积累已经揭示了以前未知的病毒,提供了大量的遗传信息。,尽管取得了这些进步,但仍然需要深入和广泛的基于分子的分析来充分理解这些病毒基因组的复杂性。兽医病毒学家面临的主要挑战之一是从大量收集的病毒基因组和测序数据中提取有意义的信息。这包括识别可能与这些病毒致病性有关的遗传元素。寻求理解致病性的遗传基础对于制定有效的策略来诊断,预防和治疗动物病毒感染。为了应对这些挑战,实验研究以及先进的生物信息学方法论起着关键作用。这些研究扩展到了简单的鉴定和病毒的分类;他们深入研究病毒基因组的分子复杂性。生物信息学工具有助于解读遗传密码,识别潜在的毒力因素,并了解这些病毒与宿主生物相互作用的机制。兽医病毒学中实验研究和晚期生物信息学的整合不仅增强了我们检测和表征病毒的能力,而且还为发现病毒发病机理的新方面开放了途径。这种整体方法有助于发展兽医医学中更具针对性和有效的干预措施,最终改善动物的健康和福祉。随着领域的不断发展,实验研究和生物信息学之间的协同作用可能会揭示出对动物病毒多样性,进化和致病机制的新见解。因此,该研究主题发表了四本原始研究文章,涉及来自包括中国和美国在内的两个国家的22位作者。该主题的研究涵盖的四个领域包括:(i)病毒宏基因组学在兽医病毒学中的应用; (ii)兽医病毒学中病毒基因的比较分析; (iii)兽医病毒学的分子流行病学和进化分析以及(iv)在研究新出现或重新出现牲畜中新的或重新出现的最新进步生物信息学。
蛋白质合成是在所有生物体中发生的重要细胞过程,涉及蛋白质的产生。此复杂的过程由两个阶段组成:转录和翻译。转录发生在细胞核内,DNA充当产生信使RNA的模板(mRNA)。mRNA然后传播到细胞质的核糖体,这是翻译的位置。在这里,mRNA携带的遗传信息被解码以合成多肽链。**转录**是蛋白质合成的初始阶段,其中DNA的遗传密码被转录为mRNA。当RNA聚合酶附着在基因的启动子序列上时,此过程就开始了,促使DNA放松。酶然后读取DNA碱基并组装互补的mRNA链。用作模板的DNA链被称为模板或反义链,而其对应物是非编码或感官链。新形成的mRNA链反射了编码DNA链,尿嘧啶代替了胸腺素。**处理mRNA **涉及新合成的mRNA的进一步细化,也称为前mRNA。在它可以将细胞核作为成熟的mRNA退出之前,它会经历剪接,编辑和聚腺苷酸化,从而改变mRNA以准备翻译。对于有兴趣可视化此过程的人,**蛋白质合成流程图**可以是一个有用的工具。它提供了从DNA转录到最终蛋白质产物的蛋白质合成每个步骤的清晰结构化表示。此外,mRNA经过编辑,改变了某些核苷酸。这样的流程图可以帮助理解基于这种基本生物学功能的复杂相互作用和机制。遗传修饰增强了单个基因的多功能性,使其能够产生多种蛋白质。这是通过称为剪接的过程来实现的,该过程从蛋白质合成流程图中描述了从信使RNA(mRNA)中去除被称为内含子的非编码区域。剪接的mRNA仅由编码区域或外显子组成,这直接有助于蛋白质合成。核糖核蛋白,核中含有RNA的小蛋白,可促进该剪接。例如,由于这种编辑,参与血液中脂质转运的APOB蛋白以两种形式存在。较小的变体是由于插入的停止信号截断了mRNA的插入信号。5'上限过程为mRNA的铅端增加了一个保护性的甲基化盖,从而保护了它免于降解和辅助核糖体附着。一系列腺嘌呤碱基的尾巴标志着mRNA的结论,在其核出口和防御降解酶的防御中发挥了作用。分子生物学的中心教条概述了从RNA到蛋白质的过渡,这一过程称为翻译。这涉及将mRNA中的遗传代码读取以合成蛋白质,如流程图所示。后加工,mRNA将核和核糖体缔合,由核糖体RNA(rRNA)和蛋白质组成。核糖体解密mRNA序列,而转移RNA(tRNA)分子依次传递适当的氨基酸。翻译分为三个阶段:启动,伸长和终止。在开始期间,现在在细胞质中的mRNA与甲基化帽和起始密码子位点的核糖体亚基结合。具有与起始密码子连接的具有匹配的反物质的tRNA,形成了起始复合物。伸长涉及连续供应氨基酸的TRNA,这些氨基酸被添加到新生的多肽链中。每个tRNA转移后其氨基酸后出发,使核糖体沿mRNA进行进展,从而为下一个tRNA腾出空间。这种系统的添加氨基酸构建了多肽,直到该过程结束为止。蛋白质合成是一个重要的细胞过程,最终导致蛋白质的产生。它在两个主要阶段展开:转录和翻译。在转录过程中,DNA的遗传密码被转录为核中的信使RNA(mRNA),包括三个阶段:启动,伸长和终止。mRNA然后将这些遗传指令传输到发生翻译的细胞质核糖体。由核糖体RNA(RRNA)和蛋白质组成的核糖体读取mRNA序列。转移RNA(tRNA)分子根据mRNA代码将适当的氨基酸带入核糖体。rRNA促进了这些氨基酸的粘结,形成了多肽链。该链可能会进一步进行合成后修饰以实现其最终蛋白质结构。mRNA退出核之前,它会经过加工,成为准备翻译的成熟转录本。蛋白质合成的过程与分子生物学的中心教条一致,该过程映射了生物系统中遗传信息的流动。合成后,多肽链可能会折叠成特定的形状,与其他分子相互作用,或在内质网中进行其他修饰以实现其指定的功能。
每个物种都有生存,生长和繁殖所需的所有生物学信息。此信息是在称为DNA的复杂分子结构中编码的。腺嘌呤,胞嘧啶,鸟嘌呤和胸腺素是使DNA序列的四个核苷酸。DNA链遗传密码取决于这些核苷酸的精确排列[1]。每年都会确定数百种新物种。NCBI当前管理35个数据库,总共3个数据库。60亿记录[2]。存在物种的起源需要鉴定同源序列,以及对DNA序列中相似性和差异的识别。由于DNA序列改变了进化,因此仅根据序列得出结论是一项挑战。探索DNA序列在基因组时代已经变得至关重要,以理解遗传数据,进化连接和功能基因组学的复杂性。在这里,高性能的计算机方法在巨大的基因组概念中的模式极为可能。这项工作使用图理论中的思想提出了一种独特的DNA序列分析方法,并通过K-均值聚类加强了结果。大规模DNA序列数据分析对于生物学家来说是高度挑战性的。已经提出了几种方法来描述DNA序列并从统计上检查其相似性。序列比对是一种通过使用序列中的核苷酸阶在基本核苷酸序列水平上比较基因组的方法。然而,由于子序列的重排,基于一致性的相似性措施在物种随着时间的流逝时会失去有效性。计算生物学家已经搜索了具有低温复杂性的无对齐技术,可以考虑单核苷酸的变化和子序列重排以评估序列相似性[3]。这些无对准的甲基苯丙胺取代了基于比对的策略,并构成了图形和数值过程[4-7]。图理论为表征,解释和理解生物学数据的详尽框架。这有助于识别新的分子机制,遗传联系和复杂的生物学过程。生物学上复杂的系统,例如基因调节网络,代谢途径和蛋白质相互作用的网络,以图形方式表示。这些例子有助于我们理解几种生物学成分之间的联系和相互作用。系统发育图结构用于了解
摘要:无细胞基因表达是研究定义最小环境中生物系统的重要研究工具,并且在生物技术中具有有希望的应用。开发控制无细胞表达的DNA模板的方法对于精确调节复杂的生物学途径并与合成细胞一起使用至关重要,尤其是使用远程,非损害刺激(例如可见光)。在这里,我们已经合成了蓝色的光活化DNA部分,这些DNA部分严格调节无细胞的RNA和蛋白质合成。我们发现,这种蓝色光激活的DNA可以与我们先前产生的紫外线(UV)光激活的DNA正交表达,我们用来生成双波长的无光控制的无细胞和栅极。通过将这些正交的光激活DNA封装到合成细胞中,我们使用了两个重叠的蓝色和紫外线模式,以对逻辑门提供精确的时空控制。我们的蓝色和紫外线正交光激活的DNA将为精确控制生物学和医学中的无细胞系统打开大门。■简介基因表达的精确控制具有广泛的应用,包括生物学研究,生物技术和医学。1缺乏控制工具的基因表达的一个区域是无细胞表达(CFE),它从DNA模板中产生功能RNA/蛋白质。cfe被广泛用于生物学,生物技术和合成生物学2,3作为研究基本生物学过程的研究工具,以最小的细胞样环境。304,5使用CFE系统阐明了几种重要的生物学机制,例如DNA复制,6,7遗传密码,8和mRNA Poly-A Tails的作用,9已被阐明。已经开发了大量不同的CFE系统10-12,现代系统提供高表达产量,多功能性,可伸缩性和可访问性。基于CFE逻辑门的生物传感器已被用来生成病原体13-15和小摩尔菌的便携式检测系统。16-18 CFE还允许对SARS-COV-2进行大规模疫苗接种工作所需的快速和高产量产生mRNA疫苗。19,20在脂质双层中的CFE系统的封装也已用于形成合成细胞,21-24允许对研究生物学过程的自下而上方法,例如细胞通信25-27-27和细胞周期28,29 Interro,并在体外并通过与活细胞相互作用在药物中使用未来的应用。
基本所有者程序。分子生物学研究领域。<生物学的女主角教条。分子生物学中最常用的测量单元。c ristalloghich to x -rays和分子建模。x体晶体学。van der waals基于射线的模型。溶剂表面和浅表静电电位。氢桥线的结构几何形状。c核酸的结构射流。核苷和核苷酸。 磷酸化的脑结合和主要结构。 DNA二级结构。 DNA B和DNA A. RNA的二级和三级结构的结构参数。 基因组对DNA的 r恢复。 Meselson和Stahl实验。 冈崎的碎片。 大肠杆菌中的复制:首先,DNA聚合酶III,DNA聚合酶I,DNA Ligasi。 真核染色体DNA的复制:DNA Polimerasi alfa,DNA Polimerasi Delta,ribonucleasi H,Endonucleasi fen1。 人性线粒体DNA的复制。 端粒的作用。 的移动RNA的理解和成熟。 操纵子。 促进mRNA的结构。 RNA均值聚合酶和相对启动子。 cappuccio组。核苷和核苷酸。磷酸化的脑结合和主要结构。DNA二级结构。DNA B和DNA A. RNA的二级和三级结构的结构参数。 基因组对DNA的 r恢复。 Meselson和Stahl实验。 冈崎的碎片。 大肠杆菌中的复制:首先,DNA聚合酶III,DNA聚合酶I,DNA Ligasi。 真核染色体DNA的复制:DNA Polimerasi alfa,DNA Polimerasi Delta,ribonucleasi H,Endonucleasi fen1。 人性线粒体DNA的复制。 端粒的作用。 的移动RNA的理解和成熟。 操纵子。 促进mRNA的结构。 RNA均值聚合酶和相对启动子。 cappuccio组。DNA B和DNA A. RNA的二级和三级结构的结构参数。基因组对DNA的 r恢复。 Meselson和Stahl实验。 冈崎的碎片。 大肠杆菌中的复制:首先,DNA聚合酶III,DNA聚合酶I,DNA Ligasi。 真核染色体DNA的复制:DNA Polimerasi alfa,DNA Polimerasi Delta,ribonucleasi H,Endonucleasi fen1。 人性线粒体DNA的复制。 端粒的作用。 的移动RNA的理解和成熟。 操纵子。 促进mRNA的结构。 RNA均值聚合酶和相对启动子。 cappuccio组。r恢复。Meselson和Stahl实验。冈崎的碎片。大肠杆菌中的复制:首先,DNA聚合酶III,DNA聚合酶I,DNA Ligasi。真核染色体DNA的复制:DNA Polimerasi alfa,DNA Polimerasi Delta,ribonucleasi H,Endonucleasi fen1。人性线粒体DNA的复制。端粒的作用。的移动RNA的理解和成熟。操纵子。促进mRNA的结构。RNA均值聚合酶和相对启动子。cappuccio组。转录和多掺杂终止。内含物和剪接。RNA编辑。 Matui真核mRNA结构。 遗传密码。 RNA中基因组的 r。 pury-极性RNA复制机制(黄病毒,picornavirus,逆转录病毒),阴性极性RNA病毒,双丝细丝RNA病毒。 肝病病毒的特殊性。 的理解蛋白质。 运输RNA的结构和功能。 tRNA氨基acancezion。 <核糖体的分裂结构和功能特征。 将转化为过程和真核生物的开始。 <分配扩展翻译的阶段。 翻译的终止。 发射。 阅读阶段的滑动。 基因组序列的Nterpotation。 原核生物和真核编码基因的典型结构。 鉴定开放阅读方案(ORF),基因表达控制的内含子和元素。 基因表达的 r抑制。 调整了Procarials中转录开始的开始:组成型控制和调节控制。 真核生物中转录开始的开始。 家政和特定于织物的基因。 <结合DNA的蛋白质的分裂结构基序:螺旋螺旋螺旋,锌指,亮氨铰链。RNA编辑。Matui真核mRNA结构。遗传密码。RNA中基因组的 r。 pury-极性RNA复制机制(黄病毒,picornavirus,逆转录病毒),阴性极性RNA病毒,双丝细丝RNA病毒。 肝病病毒的特殊性。 的理解蛋白质。 运输RNA的结构和功能。 tRNA氨基acancezion。 <核糖体的分裂结构和功能特征。 将转化为过程和真核生物的开始。 <分配扩展翻译的阶段。 翻译的终止。 发射。 阅读阶段的滑动。 基因组序列的Nterpotation。 原核生物和真核编码基因的典型结构。 鉴定开放阅读方案(ORF),基因表达控制的内含子和元素。 基因表达的 r抑制。 调整了Procarials中转录开始的开始:组成型控制和调节控制。 真核生物中转录开始的开始。 家政和特定于织物的基因。 <结合DNA的蛋白质的分裂结构基序:螺旋螺旋螺旋,锌指,亮氨铰链。r。pury-极性RNA复制机制(黄病毒,picornavirus,逆转录病毒),阴性极性RNA病毒,双丝细丝RNA病毒。肝病病毒的特殊性。的理解蛋白质。运输RNA的结构和功能。tRNA氨基acancezion。<核糖体的分裂结构和功能特征。将转化为过程和真核生物的开始。<分配扩展翻译的阶段。翻译的终止。发射。阅读阶段的滑动。基因组序列的Nterpotation。原核生物和真核编码基因的典型结构。鉴定开放阅读方案(ORF),基因表达控制的内含子和元素。r抑制。调整了Procarials中转录开始的开始:组成型控制和调节控制。真核生物中转录开始的开始。家政和特定于织物的基因。<结合DNA的蛋白质的分裂结构基序:螺旋螺旋螺旋,锌指,亮氨铰链。染色质结构对基因表达的影响:组蛋白的乙酰化和扩展; DNA甲基化。由microRNA介导的天才沉默。<用于分析核酸的Diva Basic etohs。紫外光谱和量化
01。农业生物技术单元1:细胞结构和功能原核和真核细胞结构,细胞壁,质膜,细胞细胞器的结构和功能:液泡,线粒体,质体,高尔基体,Golgi Appratus,er,Er,er,过氧化物症。细胞分裂,细胞周期的调节,蛋白质分泌和靶向,细胞分裂,生长和分化。 单元2:碳水化合物,脂质,蛋白质和核酸的生物分子和代谢结构以及功能,碳水化合物的合成,糖酵解,HMP,柠檬酸周期和代谢调节,氧化磷酸化和氧化磷酸化和底物水平磷酸化磷酸化,植物磷酸化,植物,植物,植物,植物,Hormones,Hormones。 功能分子,抗氧化剂,营养前体,HSP,抗病毒化合物。 单元3:酶学酶,结构构象,分类,测定,分离,纯化和表征,催化特异性,作用机制,活性位点,调节酶活性。 Unit 4: Molecular Genetics Concept of gene, Prokaryotes as genetic system, Prokaryotic and eukaryotic chromosomes, methods of gene isolation and identification, Split genes, overlapping genes and pseudo genes, Organization of prokaryotic and eukaryotic genes and genomes including operan, exon, intron, enhancer promoter sequences and other regulatory elements. 突变自发,诱导和位置,在细菌,真菌和病毒中重组,转化,转导,结合,转座元素和转座。 翻译机制及其控制,翻译后修改。细胞分裂,细胞周期的调节,蛋白质分泌和靶向,细胞分裂,生长和分化。单元2:碳水化合物,脂质,蛋白质和核酸的生物分子和代谢结构以及功能,碳水化合物的合成,糖酵解,HMP,柠檬酸周期和代谢调节,氧化磷酸化和氧化磷酸化和底物水平磷酸化磷酸化,植物磷酸化,植物,植物,植物,植物,Hormones,Hormones。功能分子,抗氧化剂,营养前体,HSP,抗病毒化合物。单元3:酶学酶,结构构象,分类,测定,分离,纯化和表征,催化特异性,作用机制,活性位点,调节酶活性。Unit 4: Molecular Genetics Concept of gene, Prokaryotes as genetic system, Prokaryotic and eukaryotic chromosomes, methods of gene isolation and identification, Split genes, overlapping genes and pseudo genes, Organization of prokaryotic and eukaryotic genes and genomes including operan, exon, intron, enhancer promoter sequences and other regulatory elements.突变自发,诱导和位置,在细菌,真菌和病毒中重组,转化,转导,结合,转座元素和转座。翻译机制及其控制,翻译后修改。单元5:遗传信息的基因表达,操纵子概念,原核生物和真核生物转录的转录机制,转录单位,调节序列,增强序列和增强剂,激活因子,激活因子,共激活因子,共激活因子,共抑制剂,原核生物和真核生物的转化因子和促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进因遗传密码。
所描述的过程涉及采用一个控制人类细胞中胰岛素产生并将其插入细菌的基因。这是基因工程的一个例子,涉及操纵生物体的DNA引入特定基因或修改现有基因。通过将人基因掺入细菌中,它获得了产生人胰岛素的能力。遗传工程涉及改变生物体的遗传物质以赋予其新特征。在这种情况下,控制胰岛素产生的基因取自人类细胞并插入细菌。细菌并未自然产生胰岛素,但是随着基因的增加,它现在可以这样做。这表明了如何使用基因来改变生物的特征。通过单击我们的徽标/名称旁边的“关注我”按钮,查看我们的思考大型学习TPT商店,以接收有关新产品,销售和更新的通知。#通过购买此文件,您同意我们的条款。所有权利由作者保留。此产品仅用于个人或课堂使用,不能以数字方式分发或显示用于公众视图。*遗传学和遗传互动笔记本 *染色体,基因,遗传学,性状,蛋白质,等位基因,核,同源对,Mendelian,Mendelian,纯合,杂合#遗传学和遗传笔记本交互作用提供79页的交互学习经验。它通过决定细胞中产生的蛋白质来控制蛋白质的合成。基因是遗传的基本单位,位于染色体上。It includes: * **24 Flip-Fold Vocabulary words & definitions** * **DNA Structure Explained** * **Base Pairs (Adenine, Guanine, Cytosine, Thymine)** * **Understanding Chromosomes** * **Understanding Genes** * **Understanding RNA** * **Location of Ribosomes & Nucleus Foldable** * **Dynamics of mRNA - tRNA - Ribomes ** ** **概念映射DNA ** ** ** Punnett Square ** ** ** ** x35研究好友卡(包括答案密钥)** DNA被称为生命的蓝图,因为它包含了生物体生长,发育,生存,生存和繁殖的说明。基因本质上是DNA的一部分,而染色体是DNA在细胞分裂之前折叠成的结构。每个人类体细胞都包含23对染色体,这些染色体具有所有代码为一个人的创造,生长和发育的基因。除了DNA外,这些染色体还含有组蛋白蛋白,可帮助将DNA包装到染色体中。在真核细胞中,在细胞核中发现了染色体,而在原核生物细胞中它们可以自由移动。DNA由字母 - 脱氧核糖核酸组成 - 地球上的所有生命都用作遗传密码。核酸是一种多核苷酸,由三个基本单元组成:磷酸盐基团,5个碳糖(五戊糖)和氮基碱。五个碳糖是脱氧核糖,并且由于多核苷酸链具有重复的磷酸盐和脱氧核糖单位,因此变异来自氮基碱 - 腺嘌呤,鸟嘌呤,胞嘧啶和胸骨。分子梯子的梯级由牢固的共价键将其固定在一起,糖分子与构成每个步骤的碱基相连。这些碱以特定的方式配对:腺嘌呤通过两种氢键与胸腺氨酸组合,而胞嘧啶与鸟嘌呤配对使用三个氢连接。遗传代码以这些基础的顺序编写,其中顺序很重要 - 仅交换一个基础可以更改整个消息。此代码由三胞胎组成,该三联体指示细胞创建特定的氨基酸,然后将其用于构建蛋白质。
禁运 - 2301H英国时间3月19日星期二**注意:以下发布是欧洲临床微生物学和传染病大会的特别早期发布(ECCMID 2024,巴塞罗那,西班牙,4月27日至30日)。如果您使用这个故事,请归功于国会**在今年欧洲临床微生物学和感染性疾病大会之前提出的新研究(ECCMID 2024,巴塞罗那,巴塞罗那,4月27日至30日)在荷兰的一组研究人员中,荷兰的一组研究人员表明,最新的CRISPR-CAS基因编辑技术可以用来消除HIV的动作,从而消除了HIV的启发,以消除所有的病毒。由Elena Herrera-Carrillo博士领导的研究和她的团队的一部分(Yuanling Bao,Zhenghao Yu和Pascal Kroon)在荷兰的阿姆斯特丹UMC,在寻找HIV治疗方面取得了重大突破。CRISPR-CAS基因编辑技术是一种分子生物学的开创性方法,可以对生物体的基因组进行精确改变。这种革命性技术带来了其发明家,詹妮弗·杜德纳(Jennifer Doudna)和伊曼纽尔·夏尔潘蒂(Emmanuelle Charpentier),这是2020年诺贝尔化学奖,使科学家能够准确地靶向和修改有机体DNA的特定部分(遗传密码)。在指导RNA(GRNA)的指导下,像分子“剪刀”的功能一样,CRISPR-CAS可以在指定斑点切割DNA。此作用有助于缺失不需要的基因或将新遗传物质引入生物体细胞,为晚期疗法铺平了道路。目前正在使用许多有效的抗病毒药物治疗HIV感染。HIV治疗中的重大挑战之一是该病毒将其基因组整合到宿主的DNA中的能力,因此很难消除。尽管具有功效,但终身抗病毒疗法是必不可少的,因为在停止治疗时,艾滋病毒可以从已建立的储层中反弹。作者解释说,CRISPR-CAS基因组编辑工具为靶向HIV DNA提供了一种新方法。他们说:“我们的目的是开发一种坚固且安全的组合CRISPR-CAS疗法,努力为所有人的艾滋病毒治愈而努力,以使各种细胞环境中的各种艾滋病毒菌株失活”。承认,艾滋病毒可以感染体内不同类型的细胞和组织,每个细胞和组织都有其独特的环境和特征。因此,研究人员正在寻找一种在所有这些情况下靶向艾滋病毒的方法。在这项研究中,作者使用了该分子剪刀(CRISPR-CAS)和两个GRNA来对抗“保守”的HIV序列,这意味着它们集中在病毒基因组的一部分上,这些病毒基因组在所有已知的HIV菌株中保持不变,并实现了HIV感染的HIV感染的T细胞。通过关注这些保守的部分,该方法旨在提供能够有效地对抗多种HIV变体的广谱疗法。然而,他们解释说,车辆的尺寸(称为“矢量”)用于将编码治疗性CRISPR-CAS试剂编码的盒式盒子运输到细胞中,提出了后勤挑战,因为它太大了。因此,作者试用了各种技术,以减少
小脑 爬行动物脑。 爬行动物脑 边缘系统 大脑皮层。 所有人类都有大脑,大脑是由三个不同部分组成的物理器官。 有时我们不知道自己的行为、思维和感受方式,因为我们的大脑中存储了大量信息。 我们的大脑是一台终极计算机,可以存储并继续存储信息,包含神经元细胞。 我们的中枢神经系统包括三个大脑,它们会随着年龄的增长而进化:爬行动物脑、边缘系统和大脑皮层。 1. 爬行动物脑 爬行动物脑包含我们大脑最古老的部分,大约在 5 亿年前发育,存在于爬行动物中,但大脑发育较少。 这种结构仅限于产生简单而冲动的行为,类似于总是以相同方式重复的仪式,具体取决于生理状态:恐惧、饥饿、愤怒等。 这个大脑可以理解为神经系统的一部分,在条件满足时执行编程的遗传密码。它是最古老、最简单的大脑,决定是否关注某种情况。原因是它拒绝复杂、困难或风险,而喜欢简单、清晰和直接。 2. 边缘系统 边缘系统的功能与学习有关。如果某种行为产生愉快的情绪,我们倾向于重复它或试图改变我们的环境来重现这种体验。另一方面,如果它引起痛苦,我们就会记住这种体验,避免再次经历它。 边缘系统的关键元素是海马体,它从外部(视觉、嗅觉、听觉、触觉、味觉)和内部(内脏)来源接收信息。内部和外部感觉的整合被认为是情绪体验的基础。海马体中的细胞构成了情绪键盘。 人类有思考的头脑(理性大脑)和感觉的头脑(情绪大脑)。在正常情况下,我们个性的这两个方面是平衡的,相互协调的。情绪思维比理性思维快得多,它快速激活而不分析后果,遵循联想逻辑和分类思维。具体情况并改变先前的结论。从解剖学上讲,情绪思维由边缘系统管理。边缘系统负责管理情绪、学习和记忆,由杏仁核、海马体、海马旁回等结构组成。然而,“边缘系统”的概念更多地基于功能关系,而不是解剖结构。3. 大脑皮层大脑皮层是理性的大脑。它由我们大脑中管理抽象智力、推理、语言、记忆等的部分组成。这决定了一个人对“智力”的标准概念。它的名字来源于它是大脑中最现代的进化层。它是覆盖大脑的一层薄薄的外层,呈现出许多凹槽;它厚约 2 毫米,分为六层。这一层有 300 亿个神经元,提供记忆、知识、技能和积累的经验。大脑皮层无疑是人类与动物的最大区别,因为只有人类才具备这些品质。大脑皮层或理性大脑,它允许意识和控制情绪,同时发展认知能力:记忆、集中注意力、自我反省、自我激励、解决问题、选择正确的行为......它是一个人的有意识的部分,既有生理上的,也有情感上的。 Paul MacLean 的三位一体大脑理论 参考文献: Bradford, HF (1988). Fundamentos de neuroquímica. Barcelona: Labor. Carpenter, MB (1994). Neuroanatomía. Fundamentos. Buenos Aires: Editorial Panamericana. Delgado, JM; Ferrús, A.; Mora, F.; Rubia, FJ (eds) (1998)。《神经科学手册》。马德里:Síntesis。MacLean, P. (1990)。进化中的三位一体大脑:在古脑功能中的作用。Springer Science & Business Media。MacLean, P. (1999)。三位一体大脑、情绪和科学偏见。《心智与行为杂志》,20(2),141-160。Herrmann, N.、Black, SE、Lawrence, J.、Szekely, C.、Szalai, JP、McIlroy, WE,... & Rockwood, K. (2008)。阿尔茨海默病中的三位一体大脑:PET 研究。《欧洲神经病学杂志》,15(1),47-54。
超螺旋和拓扑性质。拓扑异构酶。细菌类核。组蛋白和核小体的性质和组装。染色质的高级结构。组蛋白的翻译后修饰。溴多胺和染色质结构域。表观遗传学。原核生物和真核生物的基因组。复制模型。DNA合成。细菌DNA聚合酶。校对和缺口翻译。复制子模型。OriC和半甲基化。Ter/Tus。真核细胞核中的复制工厂。ARS结构和复制控制。酶学。前RC和前启动复合物。复制抑制剂,如化疗药物和抗病毒药物。端粒和端粒酶的结构、功能和意义。DNA损伤和修复。基因组作为动态实体。体细胞和种系突变。SNP。内在和外在损伤。化学和物理诱变剂。原核生物和真核生物中的去除、逆转和损伤避免系统。MUT 系统。BER 系统。糖基化酶的重要性。安全系统。NER 系统:UvrABCD 和 XP 蛋白。GG-NER 和 TC-NER。光解作用、MGMT、AlkBH。损伤耐受机制。TLS。细菌中的 SOS 反应。单丝和双丝断裂。HR 和 NHEJ。由于修复系统突变而导致的人类疾病。位点特异性重组。重组酶。Lambda 噬菌体。Cre-Lox 系统和 KO 小鼠。简单和复杂的转座子。SINE 和 LINE 元素、Alu 序列。原核生物和真核生物中的 RNA。结构、类型和特性。细菌 RNA 聚合酶和相关因子。转录单位。转录步骤。细菌启动子中的共识序列。终止机制。抑制剂。 Lac、ara 和 trp 操纵子。阳性和阴性对照。真核细胞中的 RNA 类别。RNA 聚合酶 (CTD) 的结构和功能。三种启动子的特征。基础转录机制。TFIIH。反式激活因子、辅激活因子。CpG 岛甲基化。组蛋白密码。长程调节剂。DNA 结合蛋白的功能域 (HTH、HD、HLH、ZF、LZ)。RNA 成熟、核运输和转录后控制。加帽类型。添加 polyA。CTD 的变化。外显子和内含子。外显子改组。四类内含子及其去除机制。剪接体和剪接位点。AT-AC 剪接。EJC 复合体。可变剪接。ESE 和 ESS 序列、SR 和 hnRNP 蛋白。SMN 基因。剪接和病理。rRNA 和 tRNA 加工反应。核糖体基因。 SnoRNA 和核仁功能。RNA 编辑。插入和转换编辑。人类 RNA 编辑的示例。细胞核和细胞质中的 RNA 周转。外泌体。无义介导的 mRNA 衰变 (NMD)。非编码 RNA。小 RNA 在细胞中的功能。RNA 干扰。siRNA。微小 RNA 的生物发生。miRNA、长链非编码 RNA、环状 RNA 的作用机制。逆转录病毒的一般信息。遗传密码和翻译。遗传密码的性质和特征。线粒体密码。ORF。tRNA 的特征。不常见碱基。aa-tRNA 合成酶的功能和类别。遗传密码的翻译重编码和扩展。SeCys。核糖体是一种核酶。原核生物和真核生物的翻译阶段。不同的启动机制。能量成本。NSMD。细菌中的 tmRNA。抑制剂。蛋白质的翻译后修饰、分选和降解。折叠和错误折叠。朊病毒。HSP60 和 HSP70。泛素和泛素化系统。SUMO 化糖基化。蛋白酶体。肽信号。蛋白质分选。线粒体输入。线粒体基因组细胞中的线粒体可塑性。人类线粒体基因组。遗传、结构、复制及其表达的原理。线粒体 DNA 中的改变。DNA 克隆的原理。修饰限制系统。克隆载体。cDNA 合成。基因组 DNA 和 cDNA 文库。TA 克隆。表达克隆。基因表达沉默。基因治疗。数据库。基因组编辑元件(Talen、Zn 指、CRISPR/Cas9 系统)。PCR 和 DNA 测序。PCR 的特性。PCR-RFLP。实时 PCR、DNA 测序。NGS。核酸杂交。杂交原理。熔点和严格性。探针制备:切口平移。Southern、Northern、杂交测定。蛋白质印迹。