1 泰莱大学生物科学学院,Subang Jaya 47500,马来西亚;siewweisheng@sd.taylors.edu.my (WSS);yinquan.tang@taylors.edu.my (YQT) 2 泰莱大学健康与医学科学学院(FHMS)药物发现和分子药理学中心(CDDMP),Subang Jaya 47500,马来西亚 3 马来亚大学医学院初级保健医学系,吉隆坡 50603,马来西亚;cheekei92@gmail.com 4 马来西亚莫纳什大学药学院生物功能分子探索(BMEX)研究组,Bandar Sunway 47500,马来西亚; goh.bey.hing@monash.edu 5 浙江大学药学院,杭州市余杭塘路 866 号,310058,中国 6 转化心脏病学中心,医学、外科与健康科学系和心血管系,Azienda Sanitaria Universitaria Giuliano Isontina,Strada di Fiume 447,34149 Trieste,意大利;Serena.Zacchigna@icgeb.org 7 国际遗传工程与生物技术中心(ICGEB),34149 Trieste,意大利 8 药学学科,悉尼科技大学健康研究生院,Ultimo,新南威尔士州 2007,澳大利亚; kamal.dua@uts.edu.au 9 澳大利亚补充和综合医学研究中心,悉尼科技大学健康学院,Ultimo,新南威尔士州 2007,澳大利亚 10 国际医科大学(IMU)药学院生命科学系,马来西亚 Bukit Jalil 57000;Dinesh_Kumar@imu.edu.my 11 咖啡研究和产品开发卓越单位,生理学系,帕夭大学医科学院,帕夭 56000,泰国;achara.phso@gmail.com (AD); saokaew@gmail.com (SS) 12 帕夭大学药学院健康结果研究和治疗安全中心(队列),帕夭 56000,泰国 13 帕夭大学药学院临床结果研究和整合卓越单位(UNICORN),帕夭 56000,泰国 14 帕夭大学药学院草药卓越单位,帕夭 56000,泰国 15 帕夭大学药学院药学实践部药学服务系,帕夭 56000,泰国 16 玛希隆大学医学院 Siriraj 医院医学系、门诊医学部,曼谷 10700,泰国 * 通信地址:coco_a105@hotmail.com (PP); weihsum.yap@taylors.edu.my (原因)
抽象背景可以通过特异性靶向触发抗体依赖性细胞介导的细胞毒性(ADCC)或通过遗传工程来表达嵌合抗原受体(CARS)来增强自然杀伤(NK)细胞的抗肿瘤活性。尽管抗体或汽车靶向,但某些肿瘤仍然对NK细胞攻击具有抗性。已知ICAM-1/LFA-1相互作用对NK细胞的自然细胞毒性的重要性,但它对ERBB2(HER2)特异性抗体曲妥珠单抗和ERBB2-培养基介导的NK细胞细胞毒性抗乳腺癌细胞诱导的ADCC的影响。方法,我们使用了表达高亲和力FC受体FcγRIIIA的NK-92细胞与曲妥珠单抗或ERBB2- CAR工程NK-92细胞(NK-92/5.28.Z)以及与ERBB2-CAR-2-CAR-2-CAR-2-CARID-ICAMID CYAMIS CYMINIC CYMINID CYMINIC CYMINID-CAR-2-CAR-2-CAR-92细胞(NK-92/5.28.z)结合使用,并或替代阻断NK细胞上的LFA-1。此外,我们特别刺激了FC受体,CAR和/或LFA-1,以研究其在免疫突触时的串扰,及其对抗体靶向抗体或靶向的NK细胞中脱粒和细胞内信号的贡献。结果阻断了LFA-1或ICAM-1的不存在会在曲妥珠单抗介导的ADCC中显着降低细胞杀伤和细胞因子释放,以针对ERBB2-阳性乳腺癌细胞,但在靶向汽车的NK细胞中并非如此。用5-Aza-2'-脱氧胞苷进行预处理,诱导ICAM-1上调,并反转ADCC中的NK细胞耐药性。此外,刺激抑制性NK细胞检查点NKG2A曲妥珠单抗单独没有充分激活NK细胞,需要额外的LFA-1共同刺激,而在CAR-NK细胞中ERBB2型车的激活会诱导的有效脱粒化,而与LFA-1无关。总内反射荧光单分子成像表明,CAR-NK细胞与排除ICAM-1的肿瘤细胞形成了不规则的免疫学突触,而曲妥珠单抗形成了典型的外周上分子超分子激活簇(PSMAC)结构。从机理上讲,ICAM-1的缺失不会影响ADCC期间的细胞 - 细胞粘附,而是导致通过PYK2和ERK1/2的信号降低,这是由CAR介导的靶向本质上提供的。
园艺在全球粮食安全,人类营养和经济发展中起着至关重要的作用。然而,园艺作物面临害虫,疾病和环境压力的重大挑战,导致了大量产量损失。由于园艺作物的遗传基础狭窄,传统繁殖的性质狭窄,传统的繁殖方法在发展抗病和高产量的品种方面存在局限性。生物技术工具提供了有希望的解决方案来克服这些挑战并提高园艺中的作物生产力和抗病性。本评论文章探讨了各种生物技术方法,包括标记辅助选择(MAS),基因工程,基因组编辑和微繁殖,及其在提高园艺作物中疾病耐药性和作物生产率方面的应用。mas通过使用与感兴趣的特征相关的分子标记,可以精确,快速选择所需的性状,例如抗病性。遗传工程允许将各种来源的新基因引入园艺作物中,以赋予对特定病原体和害虫的抗性。基因组编辑技术,尤其是CRISPR/CAS9,为植物基因组的精确和有针对性的修饰提供了强大的工具,以增强疾病抗性和其他期望的特征。微繁殖技术促进了无疾病的种植材料的快速繁殖和珍贵种质的保护。本文还讨论了将生物技术工具应用于园艺作物改善的挑战和未来前景。1。将生物技术方法与常规育种和可持续的作物管理实践的融合在一起,在面对全球挑战的情况下,开发抗疾病和高产的园艺作物,确保粮食安全并促进可持续的园艺。关键字:生物技术;抗病性;作物生产率;园艺;分子育种。引言园艺是农业的重要部门,涉及水果,蔬菜,观赏植物和药物作物的种植。它在确保食品和营养安全,产生收入并促进全球可持续发展方面起着至关重要的作用[1]。然而,园艺作物容易受到各种生物和非生物胁迫的影响,包括害虫,疾病和环境因素,这些因素可显着降低作物产量和质量[2]。传统上,传统的育种方法被用来开发具有增强疾病耐药性和生产力的改善品种。但是,这些方法是耗时,劳动密集型的,并且受培养基因库中可用的遗传多样性的限制[3]。生物技术工具已成为有力而创新的方法,以应对园艺作物面临的挑战和
基因编辑的介绍和历史 在匈牙利农业工程师卡尔·埃尔基首次提出生物技术一词后,也许很少有人会想到这项技术会用于攻击人类社会。在工作开始时,生物技术被提出为人类社会创造适当的治疗条件、健康的营养、更好的生活和充满希望的未来的一种明确而合适的解决方案。然而,随着时间的推移,这项技术的阴暗面以生物恐怖主义威胁的形式被提出,这导致在生物技术的彩色名称中使用“黑暗生物技术”来表示生物恐怖主义袭击。[1,2]。在上个世纪以技术为根基的军事发展中,包括现代化学和物理学在内的各种科学分支是主要因素。目前的趋势表明,下一次进化将植根于生物科学。生物技术的发展促进了生物武器和威胁的发展,大规模杀伤性武器发展史上的第三次技术浪潮将是生物技术。生物技术具有军民两用的可能性。换言之,生物技术既有益又有害。基于此,与生物学有关的科学,特别是遗传工程和生物技术,除了能够用于推动医学和治疗科学的发展外,同时,这些研究还可以在军事领域以医学研究为掩护进行,每天都会设计和生产出更新的生物制剂。在第一种情况下,我们将看到人类健康和社会的进步,但在第二种情况下,它将导致生物恐怖袭击和人类死亡。这种威胁源于新技术,这些新技术除了在科学技术上取得进步外,还能够生产新的微生物(人工合成)[3-6]。需要说明的是,2012年,一位美国人在《微生物生物技术杂志》上发表了一篇题为《生物威胁的未来》的文章,其中提出了人类社会灭绝的三种理论之一,即大规模核战争的可能性以及巨大的陨石撞击地面,导致传染性传染病[7]。与生物技术相关的发展的转折点是人类基因组计划的开始,该计划始于1991年,最终,随着在白宫举行的国际会议(2000年),人类基因组计划的完成向国际社会公布,该计划的主要执行者(弗朗西斯·柯林斯和克雷格·文特尔)也宣布了这一计划的完成,并于2009年被批准用于开发人类基因组计划。
核糖体的肽基转移酶中心(PTC)催化肽基转移和释放。它由23S核糖体RNA的域V组成,它通过RNA修饰酶进行了大量修饰,这表明这些修饰在功能上很重要。然而,酶的单个敲除(KO)对细菌生长的影响很小,除了研究RRNA修饰对细胞活力的重要性外,需要KOS的组合。我们的协作成功地构建了菌株,该菌株表现出迄今为止最严重的表型和致命的表现,这表明RRNA修饰酶的条件重要性。此外,在PTC“关键区域”周围缺乏23S rRNA的早期重构表现出催化惰性50s。但是,我们的合作构建了一个菌株,所有鉴定的关键区域修饰酶KOED。该菌株是可行的,并且在暗示PTC周围修饰的酶的可塑性时表现出最小的生长不足。尽管这些KO菌株的表型已经很好地表征了,但此类缺陷的分子解释仍然不清楚。在这里,基于生化方法,我指出了酶KO会影响核糖体组装和易位,而不是在两个组合的KO菌株中,而不是肽键的形成或释放。这些结果阐明了神秘的rRNA修饰的重要性和作用。尽管建议在生理pH下进行水解速率限制步骤,但证据是间接的。释放也是通过PTC催化的,并且了解限制速率的步骤可以帮助遗传工程,因为终止密码子的读取可以掺入不自然的氨基酸并治疗遗传疾病。在这里,我使用氟修饰的氨基酸激活了酯电力。在较低pHS处与活化酯的释放反应加速度为限制速率水解的直接证据。肽基转移和释放的机械研究主要基于50S亚基的晶体结构。然而,两个模型反应在50年代均显示出比70年代慢的速度速率,从而质疑其相关性。在这里,我优化了肽基的转移和释放模型反应,尽管在有机溶剂中,但对近物生理速率进行了优化。通过用PEG代替有机溶剂来实现的一种更生理的溶液,可以最能加速肽基转移,但不能释放。这些优化的反应应有助于分析合成核糖体/PTC的活性,并深入了解核糖体的演变。
PAL § 3102-e(1)(b) 下的新兴技术是指:1) 先进材料和加工技术,涉及开发、修改或改进一种或多种材料或方法,以生产具有改进性能特征或特殊功能属性的设备和结构,或激活、加速或以其他方式改变化学、生化或医学过程。此类技术包括但不限于以下内容:金属合金、金属基体和陶瓷复合材料、先进聚合物、薄膜、膜、超导体、电子和光子材料、生物活性材料、生物加工、基因工程、催化剂、废物减排和废物处理技术;2) 工程、生产和国防技术,涉及基于知识的控制系统和架构、先进的制造和设计流程、设备和工具,或推进、导航、制导、航海、航空和航天地面和机载系统、仪器和设备。此等技术包括但不限于下列各项:计算机辅助设计与工程、计算机集成制造、机器人与自动化设备、集成电路制造与测试设备、传感器、生物传感器、信号与图像处理、医疗与科学仪器、精密加工与成型、生物与遗传研究设备、环境分析、补救、控制与预防设备、国防指挥与控制设备、航空电子与控制装置、导弹与航天器推进装置、军用飞机、航天器以及监视、跟踪与防御预警系统;3)用于生产电子、光电子、机械设备和带有交互式媒体内容的电子发行产品的电子和光子器件及部件。此等技术包括但不限于下列各项:微处理器、逻辑芯片、存储芯片、激光器、印刷电路板技术、电致发光、液晶、等离子和真空荧光显示器、光纤、磁信息与光信息存储、光学仪器、透镜与滤波器、单工与双工数据库以及太阳能电池; 4)涉及先进计算机软件和硬件、可视化技术和人机界面技术的信息和通信技术、设备和系统。这些技术包括但不限于:操作和应用软件、人工智能、计算机建模和仿真、高级软件语言、神经网络、处理器架构、动画和全动态视频、图形硬件和软件、语音和光学字符识别、大容量信息存储和检索、数据压缩、宽带交换、多路复用、数字信号处理、和光谱技术;5)生物技术是涉及对生物体进行科学操作的技术,特别是在分子和亚分子遗传水平上,以生产有助于改善植物、动物和人类生活和健康的产品;以及与这些改进相关的科学研究、药理学、机械和计算应用和服务。此类应用和服务所包含的活动应包括但不限于替代 mRNA 剪接、DNA 序列扩增、抗原转换、生物增强、生物富集、生物修复、染色体步行、细胞遗传工程、DNA 诊断、指纹识别和
抽象背景可以通过特异性靶向触发抗体依赖性细胞介导的细胞毒性(ADCC)或通过遗传工程来表达嵌合抗原受体(CARS)来增强自然杀伤(NK)细胞的抗肿瘤活性。尽管抗体或汽车靶向,但某些肿瘤仍然对NK细胞攻击具有抗性。已知ICAM-1/LFA-1相互作用对NK细胞的自然细胞毒性的重要性,但它对ERBB2(HER2)特异性抗体曲妥珠单抗和ERBB2-培养基介导的NK细胞细胞毒性抗乳腺癌细胞诱导的ADCC的影响。方法,我们使用了表达高亲和力FC受体FcγRIIIA的NK-92细胞与曲妥珠单抗或ERBB2- CAR工程NK-92细胞(NK-92/5.28.Z)以及与ERBB2-CAR-2-CAR-2-CAR-2-CARID-ICAMID CYAMIS CYMINIC CYMINID CYMINIC CYMINID-CAR-2-CAR-2-CAR-92细胞(NK-92/5.28.z)结合使用,并或替代阻断NK细胞上的LFA-1。此外,我们特别刺激了FC受体,CAR和/或LFA-1,以研究其在免疫突触时的串扰,及其对抗体靶向抗体或靶向的NK细胞中脱粒和细胞内信号的贡献。结果阻断了LFA-1或ICAM-1的不存在会在曲妥珠单抗介导的ADCC中显着降低细胞杀伤和细胞因子释放,以针对ERBB2-阳性乳腺癌细胞,但在靶向汽车的NK细胞中并非如此。用5-Aza-2'-脱氧胞苷进行预处理,诱导ICAM-1上调,并反转ADCC中的NK细胞耐药性。此外,刺激抑制性NK细胞检查点NKG2A曲妥珠单抗单独没有充分激活NK细胞,需要额外的LFA-1共同刺激,而在CAR-NK细胞中ERBB2型车的激活会诱导的有效脱粒化,而与LFA-1无关。总内反射荧光单分子成像表明,CAR-NK细胞与排除ICAM-1的肿瘤细胞形成了不规则的免疫学突触,而曲妥珠单抗形成了典型的外周上分子超分子激活簇(PSMAC)结构。从机理上讲,ICAM-1的缺失不会影响ADCC期间的细胞 - 细胞粘附,而是导致通过PYK2和ERK1/2的信号降低,这是由CAR介导的靶向本质上提供的。
引言生物技术领域在近几十年来取得了显着的进步,彻底改变了我们对遗传学的理解,并为创新和商业化提供了前所未有的机会。基因工程尤其是一种有力的工具来操纵和修改遗传材料,从而导致基因修饰的生物(GMO),新型疗法和开创性发现的发展。然而,这种快速的进步也带来了与专利法相交的复杂的道德困境和挑战,这是一个法律框架,旨在通过授予发明者的创造权来鼓励创新。本介绍提供了对生物技术创新中专利法演变的深入探索,强调了基于这项批判性研究的背景,研究问题,研究问题和研究目标。1背景生物技术,被广泛定义为生物原理和技术开发产品和过程的应用,已改变了包括医学,农业和环境科学在内的各个部门。遗传工程是生物技术的一部分,允许科学家操纵和修改DNA,从而能够具有所需特征的生物,生产生物制药的产生以及创新疗法的发展。响应这些进步,专利法在激励对生物技术研究和发展的投资方面发挥了关键作用。专利传统上与有形发明有关,已扩展到涵盖生物,基因和基因工程方法的方法。这种演变始于1980年的Landmark美国最高法院诉Chakrabarty诉Chakrabarty案,该裁决宣布人类设计的生物体可以获得专利。该裁决为转基因生物的专利性树立了先例,并标志着对生物技术专利法的更全面方法的启动。但是,生物技术和专利定律的融合并非没有争议。道德考虑已成为话语的关键组成部分。围绕生命形式的商品化,遗传歧视以及转基因生物的环境影响的问题引发了公众的关注,并促使决策者,生物伦理学家和法律专家重新评估了在生物技术中的专利意义。研究问题本研究的核心研究问题在于生物技术创新与专利定律之间的复杂相互作用,以及导致的道德紧张局势。随着基因工程技术的不断发展,在促进知识产权和解决道德问题之间取得平衡的需求变得越来越紧迫。这种平衡对于确保生物技术进步的益处在保护潜在的虐待和道德困境的同时,至关重要。研究问题有效地解决了研究问题,本研究将研究以下研究问题:
所描述的过程涉及采用一个控制人类细胞中胰岛素产生并将其插入细菌的基因。这是基因工程的一个例子,涉及操纵生物体的DNA引入特定基因或修改现有基因。通过将人基因掺入细菌中,它获得了产生人胰岛素的能力。遗传工程涉及改变生物体的遗传物质以赋予其新特征。在这种情况下,控制胰岛素产生的基因取自人类细胞并插入细菌。细菌并未自然产生胰岛素,但是随着基因的增加,它现在可以这样做。这表明了如何使用基因来改变生物的特征。通过单击我们的徽标/名称旁边的“关注我”按钮,查看我们的思考大型学习TPT商店,以接收有关新产品,销售和更新的通知。#通过购买此文件,您同意我们的条款。所有权利由作者保留。此产品仅用于个人或课堂使用,不能以数字方式分发或显示用于公众视图。*遗传学和遗传互动笔记本 *染色体,基因,遗传学,性状,蛋白质,等位基因,核,同源对,Mendelian,Mendelian,纯合,杂合#遗传学和遗传笔记本交互作用提供79页的交互学习经验。它通过决定细胞中产生的蛋白质来控制蛋白质的合成。基因是遗传的基本单位,位于染色体上。It includes: * **24 Flip-Fold Vocabulary words & definitions** * **DNA Structure Explained** * **Base Pairs (Adenine, Guanine, Cytosine, Thymine)** * **Understanding Chromosomes** * **Understanding Genes** * **Understanding RNA** * **Location of Ribosomes & Nucleus Foldable** * **Dynamics of mRNA - tRNA - Ribomes ** ** **概念映射DNA ** ** ** Punnett Square ** ** ** ** x35研究好友卡(包括答案密钥)** DNA被称为生命的蓝图,因为它包含了生物体生长,发育,生存,生存和繁殖的说明。基因本质上是DNA的一部分,而染色体是DNA在细胞分裂之前折叠成的结构。每个人类体细胞都包含23对染色体,这些染色体具有所有代码为一个人的创造,生长和发育的基因。除了DNA外,这些染色体还含有组蛋白蛋白,可帮助将DNA包装到染色体中。在真核细胞中,在细胞核中发现了染色体,而在原核生物细胞中它们可以自由移动。DNA由字母 - 脱氧核糖核酸组成 - 地球上的所有生命都用作遗传密码。核酸是一种多核苷酸,由三个基本单元组成:磷酸盐基团,5个碳糖(五戊糖)和氮基碱。五个碳糖是脱氧核糖,并且由于多核苷酸链具有重复的磷酸盐和脱氧核糖单位,因此变异来自氮基碱 - 腺嘌呤,鸟嘌呤,胞嘧啶和胸骨。分子梯子的梯级由牢固的共价键将其固定在一起,糖分子与构成每个步骤的碱基相连。这些碱以特定的方式配对:腺嘌呤通过两种氢键与胸腺氨酸组合,而胞嘧啶与鸟嘌呤配对使用三个氢连接。遗传代码以这些基础的顺序编写,其中顺序很重要 - 仅交换一个基础可以更改整个消息。此代码由三胞胎组成,该三联体指示细胞创建特定的氨基酸,然后将其用于构建蛋白质。
摘要:基因组编辑,特别是使用 CRISPR-Cas9,是操纵基因组(包括大肠杆菌)的有力工具。本研究旨在利用 CRISPR-Cas9 对大肠杆菌中的 lacZ 基因进行遗传工程改造,以评估其在红薯皮(Ipomoea batatas)深层发酵过程中在淀粉酶产生中的作用。在 37ºC、pH 6.2、7.0 和 8.4 条件下培养编辑型和野生型大肠杆菌,并使用硫酸铵纯化所得淀粉酶。使用淀粉作为葡萄糖源筛选淀粉酶的产生,并在不同温度和 pH 水平下进行酶表征。没有向导 RNA (gRNA) 和阿拉伯糖的 CRISPR-Cas9 编辑的大肠杆菌显示蓝色菌落,而有 gRNA、Cas9 但没有阿拉伯糖的 CRISPR-Cas9 编辑的大肠杆菌没有菌落。用 Cas9 和阿拉伯糖但不加 gRNA 编辑的大肠杆菌也产生了蓝色菌落。当暴露于 Cas9、gRNA 和阿拉伯糖时,菌落表现出白色表型。凝胶电泳显示,暴露于 Cas9 和阿拉伯糖的大肠杆菌在 650 bp 处有两条带,而暴露于不含 gRNA 和阿拉伯糖的 Cas9 的蓝色菌落则在 1,100 bp 处显示条带。阳性对照显示三条不同的条带,而阴性对照没有。淀粉酶筛选显示野生型大肠杆菌和 CRISPR 编辑的大肠杆菌有相似的透明区。在发酵 15 天期间,pH 8.4 为野生型大肠杆菌的生长提供了最有利条件,pH 7.0 为 CRISPR 编辑的大肠杆菌的生长提供了最有利条件。温度和 pH 值测定表明,野生型和 CRISPR 编辑的大肠杆菌在 45ºC 和 pH 7 下均表现出相似的最大淀粉酶活性,酶产量没有显着差异。这些结果表明 lacZ 基因对大肠杆菌中的淀粉酶产生没有显着影响。 DOI:https://dx.doi.org/10.4314/jasem.v28i10.5 许可证:CC-BY-4.0 开放获取政策:JASEM 发表的所有文章均为开放获取文章,任何人都可以免费下载、复制、重新分发、转发、翻译和阅读。版权政策:© 2024。作者保留版权并授予 JASEM 首次出版权。本文的任何部分均可未经许可重复使用,但必须引用原始文章。引用本文为:MINARI, J. B; NWOSU, GE; DADA, I. S; ABDULAZEEZ, DO (2024)。使用马铃薯皮(Ipomea batata)作为酶源,分离和表征由 CRISPR-Cas 9 编辑的 LacZ 基因和未编辑的大肠杆菌产生的淀粉酶。应用科学与环境管理杂志 28 (10) 2981-2989 日期:收到日期:2024 年 7 月 7 日;修订日期:2024 年 8 月 15 日;接受日期:2024 年 8 月 19 日出版日期:2024 年 10 月 5 日关键词:CRISPR Cas9 基因编辑、lacZ 基因、大肠杆菌、马铃薯皮发酵、淀粉酶理想的代谢催化剂是酶,它通过明确定义的途径提供各种内源性生化反应。(Singh 等人,2019 年)。由于酶存在于所有自然界物种中,包括植物、动物、和微观微生物,它们可用于工业用途。此外,在受控情况下,各种微生物酶被识别
