遗传性癌症的临床管理依赖于早期诊断和风险分层,这得益于基因检测。识别高风险基因中的种系突变可以实施量身定制的监测和预防策略。例如,BRCA1/2 突变携带者可以接受 MRI 增强筛查、预防性手术或化学预防以降低癌症风险。同样,患有林奇综合征的人可以从定期结肠镜检查中受益,在某些情况下,还可以通过预防性子宫切除术来预防子宫内膜癌。遗传咨询是遗传性癌症护理的一个综合组成部分,指导个人和家庭了解基因检测的影响。咨询解决了遗传性癌症风险的心理和伦理层面,包括偶然发现的可能性和对家庭成员的影响。
mtap del定义为两拷贝损失。体细胞改变(ALTS),从IHC,TMB和MSI的基因表达模式,PD-L1预测的免疫细胞浸润。融合,以避免任何潜在的偏见。卡方/Fisher的精确测试或Kruskal-Wallis检验用于评估统计显着性(p <0.05,Q <0.05,用于用于多次测试的错误发现率校正)。
引言在过去的30年中,人类遗传学取得了重大进步。繁琐的连锁分析研究在70年代导致认识到80年代中期的基因基因[1]。然后在1990年代和2000年代初,我们目睹了引起疾病基因的发现。在1990年,MYH7(所有基因的全名均在补充材料中给出,表S1)成为第一个因引起超营养性心肌病(HCM)[2]而闻名的基因[2],在次年,FBN1成为了首个已知的基因,负责主动脉瘤形成[3]。有关直接参与长QT综合征(LQT),Brugada综合征(BRS),扩张心肌病(DCM)和心律失常右心肌病(ARVC)的基因的信息,分别于1995年,1995年,1995年,1998年,1999年,1999年和2000年出版[4-7]。随着下一代测序(NGS)的出现,今天,我们已经有100多个已建立的基因与遗传性心脏疾病具有确定性或强大的关联,数百种正在研究[8]。这改善了我们对病理机制的理解,并允许发现基因特异性疗法[9]并识别新的心血管表型[10]。大多数心脏病均以常染色体显性(AD)方式遗传,并有资格获得心肌病(CMP),心律不齐,主动脉症,脂质疾病和先天性心脏缺陷(CHD)。这些条件经常具有重叠的表型,即使在一个家族中也可能会有所不同,因为相同的致病性(P)/可能致病性(LP)变体的效果
这种情况是由TTR基因中的突变引起的,该突变导致产生称为Val122ile的异常(“变体”)TTR蛋白,有时称为V122i。突变是DNA序列的永久变化,构成了体内所有细胞中的基因。DNA的作用像蓝图或配方,用于构建组成身体的蛋白质。蛋白质由氨基酸的细胞组成,以精确的顺序组装。DNA确定氨基酸组装的顺序。在患有Val122ile突变的人中,称为瓣膜的氨基酸被TTR分子中的位置为122的氨基酸代替。因此,体内产生的每个TTR分子与正常的“野生型” TTR略有不同。与正常的“野生型” TTR相比,这种不同的“变体” TTR具有更大的淀粉样蛋白生成性,这意味着它具有更大的形成淀粉样蛋白原纤维的趋势,它们沉积在心脏组织中,导致心脏僵硬,有时会导致腕部,从而导致腕隧道综合征。
遗传性视网膜疾病 (IRD) 包括一组导致渐进性视力障碍和失明的多种遗传性疾病。多年来,人们在了解 IRD 的潜在分子机制方面取得了长足的进步,为新型治疗干预奠定了基础。基因疗法已成为治疗 IRD 的一种引人注目的方法,通过靶向基因增强取得了显著的进展。然而,仍然存在一些挫折和限制,阻碍了 IRD 基因治疗的广泛临床成功。一种有希望的研究途径是开发新的基因组编辑工具。CRISPR-Cas9 核酸酶、碱基编辑和主要编辑等尖端技术在靶向基因操作中提供了前所未有的精度和效率,为克服 IRD 基因治疗中现有的挑战提供了潜力。此外,由于对病毒载体的免疫反应,传统基因治疗遇到了重大挑战,这仍然是实现持久治疗效果的关键障碍。纳米技术已成为优化眼部疾病基因治疗结果的宝贵盟友。纳米级精度设计的纳米粒子可以更好地将基因递送至特定视网膜细胞,从而增强靶向性并降低免疫原性。在这篇综述中,我们讨论了 IRD 基因治疗的最新进展,并探讨了临床试验中遇到的挫折。我们重点介绍了用于治疗 IRD 的基因组编辑技术进展,以及如何将纳米技术整合到基因递送策略中以提高基因治疗的安全性和有效性,最终为 IRD 患者带来希望,并可能为其他眼部疾病的类似进展铺平道路。
本文已接受出版并经过完整的同行评审,但尚未经过文字编辑、排版、分页和校对过程,这可能会导致此版本与记录版本之间存在差异。请引用本文 doi: 10.1111/EXD.14314
遗传性视网膜疾病 (IRD) 是一种慢性遗传性疾病,会导致视网膜逐渐退化。疾病病因源于遗传或新生基因突变,大多数 IRD 是由点突变引起的。鉴于 IRD 数量众多,迄今为止,已在约 280 个基因中发现了导致这些营养不良的突变。然而,目前只有一种 FDA 批准的基因增强疗法 Luxturna (voretigene neparvovec-rzyl) 可用于 RPE65 介导的视网膜色素变性 (RP) 患者。虽然其他基因的临床试验正在进行中,但这些技术通常涉及基因增强而不是基因组手术。虽然基因增强疗法将健康的 DNA 副本传递给视网膜细胞,但基因组手术使用基于成簇的规律间隔短回文重复序列 (CRISPR) 的技术来纠正内源性基因组序列中的特定基因突变。一种称为 prime editing (PE) 的新技术应用了基于 CRISPR 的技术,该技术有可能纠正所有 12 种可能的转换和颠换突变以及小插入和缺失。EDIT-101 是一种基于 CRISPR 的疗法,目前正在临床试验中,它使用双链断裂和非同源末端连接来消除 CEP290 基因中的 IVS26 突变。最好是,PE 不会导致双链断裂,也不需要任何供体 DNA 修复模板,这突显了其无与伦比的效率。相反,PE 使用逆转录酶和 Cas9 切口酶来修复基因组中的突变。虽然这项技术仍在发展中,还有几个挑战尚待解决,但它为 IRD 治疗的未来带来了希望。
重要信息 – 请在使用本政策前阅读 这些服务可能包含在所有 Medica 计划中,也可能不包含在内。 保险范围受适用联邦或州法律的要求约束。 有关其他具体保险信息,请参阅会员的计划文件。 如果政策要求与会员的计划文件存在差异,则将使用会员的计划文件来确定保险范围。 对于 Medicare、Medicaid 和其他政府计划,除非这些计划需要不同的保险范围,否则将适用本政策。 会员可以拨打会员身份证上列出的电话号码联系 Medica 客户服务部,以更具体地讨论他们的福利。 提供商如果对此 Medica 保险政策有疑问,可以拨打免费电话 1-800-458-5512 联系 Medica 提供商服务中心。 Medica 保险政策不是医疗建议。 会员应咨询适当的医疗保健提供商,以获得所需的医疗建议、护理和治疗。 概述
我证明该患者已经收到了有序测试的目的,风险和好处的解释。我下面的签名证明了测试的医学必要性(包括测试结果将为治疗计划提供信息),并且患者已提供知情同意,符合适用于tempus或参考实验室的适用法律要求: (b)根据需要报销或处理保险索赔的必要条件,获取,接收和发布健康信息(包括测试结果); (c)根据适用法律保留并使用样本和健康信息在不限期的时间内; (d)根据适用的法律,将这些样本和信息取消识别并使用并共享由此产生的取消识别样本和信息。