通讯作者:Gennady Bratslavsky MD,纽约州立大学上州医科大学泌尿外科系,750 E. Adams St.,Syracuse,NY 13210,bratslag@upstate.edu,Brian Shuch MD,加利福尼亚大学洛杉矶分校泌尿外科系,300 Stein Plaza Drive,3 楼,洛杉矶,CA 90095,bsuch@mednet.ucla.edu,。作者贡献:Gennady Bratslavsky:概念化;数据获取和解释;修改知识内容;写作 - 原始草稿,审查和编辑 Neil Mendhiratta:方法论;数据获取和解释;修改知识内容;写作 - 原始草稿,审查和编辑 Michael Daneshvar:方法论;数据获取和解释;修改知识内容;写作 - 原始草稿,审查和编辑 James Brugarolas:数据获取和解释;修改知识内容;写作 – 审查和编辑 Mark W. Ball:数据获取和解释;修改知识内容;写作 – 审查和编辑 Adam Metwalli:数据获取和解释;修改知识内容;写作 – 审查和编辑 Katherine L. Nathanson:数据获取和解释;修改知识内容;写作 – 审查和编辑 Phillip M. Pierorazio:数据获取和解释;修改知识内容;写作 – 审查和编辑 RonaldS. Boris:数据获取和解释;修改知识内容;写作 – 审查和编辑 Eric A Singer:数据获取和解释;修改知识内容;写作 – 审查和编辑 Maria I. Carlo:数据获取和解释;修改知识内容;写作 – 审查和编辑 Mary B. Daly:数据获取和解释;修改知识内容;写作 – 审查和编辑 Elizabeth P. Henske:数据获取和解释;修改知识内容;写作 – 审查和编辑 Colette Hyatt:数据获取和解释;修改知识内容;写作 — 审查和编辑 Lindsay Middleton:数据获取和解释;修改知识内容;写作 — 审查和编辑 Gloria Morris:数据获取和解释;修改知识内容;写作 — 审查和编辑 Anhyo Jeong:方法论;数据获取和解释;写作 — 审查和编辑 Vivek Narayan:数据获取和解释;修改知识内容;写作 — 审查和编辑 W. Kimryn Rathmell:数据获取和解释;修改知识内容;写作 — 审查和编辑 Ulka Vaishampayan:数据获取和解释;修改知识内容;写作 — 审查和编辑 Bruce H. Lee:数据获取和解释;修改知识内容;写作 — 审查和编辑 Dena Battle:数据采集和解释;修改知识内容;写作——审查和编辑 Michael J. Hall:数据采集和解释;修改知识内容;写作——审查和编辑 Khaled Hafez:数据采集和解释;修改知识内容;写作——审查和编辑 Michael Jewett:数据采集和解释;修改知识内容;写作——审查和编辑 Christina Karamboulas:数据采集和解释;修改知识内容;写作——审查和编辑 Sumanta K. Pal:数据采集和解释;修改知识内容;写作——审查和编辑 Ari Hakimi:数据采集和解释;修改知识内容;写作——审查和编辑 Alexander Kutikov:数据采集和解释;修改知识内容;写作——审查和编辑 Othon Iliopoulos:概念化;数据采集和解释;修改知识内容;写作——审查和编辑 W. Marston Linehan:数据采集和解释;修改知识内容;写作 – 审阅和编辑 Eric Jonasch:概念化;数据获取和解释;修改知识内容;写作 – 审阅和编辑 Ramaprasad Srinivasan:概念化;数据获取和解释;修改知识内容;写作 – 审阅和编辑 Brian Shuch:概念化;数据获取和解释;修改知识内容;写作 – 原始草稿、审阅和编辑概念化;数据获取与解释;修改知识内容;写作 - 审阅与编辑 Brian Shuch:概念化;数据获取与解释;修改知识内容;写作 - 原始草稿、审阅与编辑概念化;数据获取与解释;修改知识内容;写作 - 审阅与编辑 Brian Shuch:概念化;数据获取与解释;修改知识内容;写作 - 原始草稿、审阅与编辑
视网膜是专门用于视觉的中枢神经系统的一部分。遗传性视网膜疾病(IRD)是一组临床和遗传异质性疾病,导致渐进的视力障碍或失明。尽管每种疾病很少见,但IRD在全球多达550万个人中积累了失明。目前,IRD的病理生理机制尚不完全了解,并且可用的治疗选择有限。大多数IRD是由光敏感光体变性引起的。消除光感受器的结构和/或功能的遗传突变会导致视觉障碍,然后因失去感受器而导致失明。在健康的视网膜中,感光体在结构和功能上与视网膜色素上皮(RPE)和Müller胶质(MG)相互作用,以维持视网膜稳态。具有光感受器变性为主要表型的多个IRD是由RPE-和/或MG相关基因的突变引起的。最近的研究还表明,由无处不在表达的睫状基因突变引起的MG和RPE受损。因此,光感受器变性可能是基因突变的直接结果,/或可能是视网膜相互作用伴侣功能障碍的继发性。本综述总结了光感受器-RPE/mg相互作用在支持视网膜功能方面的机制,并讨论了这些过程的破坏如何导致光感受器变性,以提供IRD病原体和治疗范式的独特视角。我们将首先描述视网膜和IRD的生物学,然后讨论感光体与MG/RPE之间的相互作用,以及它们在疾病发病机理中的影响。最后,我们将总结针对MG和/或RPE的IRD治疗剂的最新进展。
方法:这项在Jean Perrin中心进行的单中心研究将涉及50例UM患者的外显子组测序,这些患者在BAP1或MBD4基因中没有已知的致病变异。主要目标是鉴定UM患者中与遗传癌易感性相关的新型候选基因。将进行多步生物信息学分析,以识别感兴趣的基因。次要目标是探索已知与其他癌症有关的基因,这已经描述了紫抗体黑色素瘤的发生,但尚未完全建立关联。该研究已于2024年10月开始,患者招募持续了12个月。未计划随访期,但是遗传分析的持续时间估计为六个月,最终研究报告预计到2026年10月。
“即使我们只关注那些被诊断患有家族性高胆固醇血症并因此可以接受治疗的人,他们平均比其他人群早七年患上心血管疾病,并出现相关症状。更好地检测患者意味着可以尽早开始治疗,防止家族性高胆固醇血症导致心血管疾病。”
1比利时安特卫普大学医院,埃德吉姆,2转化神经科学研究小组,医学与健康科学学院,安特卫普大学,埃德维姆大学,比利时,家庭医学与人口健康系3,医学与健康科学系家庭医学与人口健康系,医学与健康科学系,贝尔吉尔普大学,belrijk,belgiim of Healtay and Health of Shote and Health of Nefter of Healtial and Offact and Health of Healtial and Offact and Health of Note and Health of Note and Shoce frocutt and Health of Shoce Fracemitation&4 Antwerp, Wilrijk, Belgium, 5 Immunology and Infection, University of Hasselt, Diepenbeek, Belgium, 6 Biomedical Research Institute, University of Hasselt, Diepenbeek, Belgium, 7 Department of Neurology, Noorderhart Maria Hospital, Pelt, Belgium, 8 University Multiple Sclerosis Centre, University of Hasselt, Hasselt, Belgium, 9 Faculty of Medicine and Health科学,根特大学,根特大学,比利时,十大神经病学系,Algemeen Ziekenhuis Sint Jan,Bruges,比利时,比利时,11号神经病学系,大学医院Ghent,Ghent,Ghent,Belgium,12
摘要:遗传性转甲状腺素蛋白介导 (hATTR) 淀粉样变性是一种由 TTR 基因突变引起的进行性疾病,可导致多系统器官功能障碍。致病性 TTR 聚集、错误折叠和纤维化导致淀粉样蛋白沉积在多个身体器官中,并经常影响周围神经系统和心脏。常见的神经系统表现包括:感觉运动性多发性神经病 (PN)、自主神经病、小纤维 PN 和腕管综合征。由于 hATTR PN 不属于鉴别诊断,因此诊断延迟导致许多患者病情明显进展。最近,加拿大卫生部批准了两种有效的新型疾病改良疗法 inotersen 和 patisiran,用于治疗 hATTR PN。早期诊断对于及时引入这些疾病改良疗法至关重要,这些疗法可以减少损伤、改善生活质量并延长生存期。在本指南中,我们旨在通过针对加拿大的诊断、监测和治疗提出建议来提高对 hATTR PN 的认识和结果。
伴有脑铁沉积的神经退行性疾病 (NBIA) 是一组罕见但极具破坏性的遗传性神经系统疾病,其共同特征是认知和运动能力逐渐下降,以及基底神经节铁沉积增加。婴儿和儿童期最常见的疾病是β-螺旋桨蛋白相关神经退行性疾病 (BPAN)、泛酸激酶相关神经退行性疾病 (PKAN)、磷脂酶 A 2 相关神经退行性疾病 (PLAN) 和线粒体膜蛋白相关神经退行性疾病 (MPAN)。还报道了其他几种不太常见的 NBIA 疾病,目前已提出 15 种伴有脑铁沉积的神经退行性疾病的单基因病因。这些疾病具有共同的神经放射学特征,即在特定的 MR 序列上基底神经节信号低强度,这可显示磁共振磁敏感现象,表明矿化过度(T2 加权、T2* 加权、磁敏感度加权和回波平面成像 b0 扩散成像数据集)[1],一些疾病还与尸检分析中的铁积累等神经病理学发现有关。随着时间的推移,越来越明显的是,这些放射学特征与广泛的神经系统和神经退行性疾病有关,包括线粒体细胞病、遗传性肌张力障碍(例如由 KMT2B 和 VPS16 突变导致的肌张力障碍)和溶酶体疾病(GM1 神经节苷脂沉积症、α 岩藻糖苷沉积症)[2–5],尽管对于其中许多疾病,尚未报道与尸检研究的相关性。因此,对 NBIA 疾病的准确分类仍不确定。
摘要:Duchenne肌肉营养不良(DMD)是当前无法治愈的X连锁神经肌肉疾病,其特征是进行性肌肉浪费和早亡,通常是由于心脏衰竭而导致的。肌营养不良蛋白基因中引起DMD的突变是高度多样的,这意味着,可以普遍适用的治疗所有患者的疗法的发展非常具有挑战性。DMD的领先治疗策略是反义寡核苷酸介导的剪接调节,从而将一个或多个特定的外显子排除在成熟的肌营养不良蛋白mRNA之外,以纠正翻译阅读框。的确,三个外显子跳过寡核苷酸已获得FDA批准用于DMD患者。第二代外显子跳过药物(即肽 - 抗乙二理I寡核苷酸共轭物)表现出增强的效力,并且在心脏中诱导肌营养不良蛋白的恢复。同样,针对各种外显子的多种其他反义寡核苷酸药物正在临床发育中,以治疗更大比例的DMD患者突变。在基因组工程领域的相对最新进展(具体而言,CRISPR/CAS系统的发展)为DMD的RNA指导遗传校正提供了多种有希望的治疗方法或基础编辑技术。肾脏毒性,病毒载体免疫原性和脱靶基因编辑)以及高成本的治疗成本。对剪接调制和基因编辑方法的临床翻译的潜在局限性,包括药物输送,均匀肌营养不良蛋白表达在校正的肌纤维中的重要性,安全问题(例如
1 西班牙圣地亚哥德孔波斯特拉医院综合体 (CHUS) 圣地亚哥卫生研究所 (IDIS) 肾脏疾病发展外来生物学和生物学组肾病学实验室 (No. 11),15706 圣地亚哥德孔波斯特拉, fernando.gomez.garcia@sergas.es(FG-G.); raquel.martinez.pulleiro0@usc.es(RM-P.); noa.carrera.cachaza@sergas.es (NC) 2 Xenonic 医学组,分子医学和慢性疾病单一研究中心(CiMUS),15706 圣地亚哥德孔波斯特拉,西班牙 3 加利西亚 Xenonic 医学公共基金会-SERGAS,圣地亚哥德孔波斯特拉医院综合体(CHUS),15706 圣地亚哥德孔波斯特拉,西班牙 * 通讯地址:catarina.allegue@usc.es (CA); miguel.garcia.gonzalez@sergas.es (MAG-G.)
抽象的遗传性经性淀粉样蛋白病(ATTRV)是一种严重的成人常染色体显性遗传遗传性全身性疾病,主要影响周围和自主神经系统,心脏,肾脏和眼睛。ATTRV是由经腹蛋白(TTR)基因的突变引起的,导致包括周围神经系统在内的多个器官中淀粉样蛋白原纤维的细胞外沉积。通常,与ATTRV相关的神经病变的特征是迅速进行性和致残的感觉运动轴突神经病,并早期纤维介入。腕管综合征和心脏功能障碍经常作为ATTRV表型的一部分共存。尽管神经病学家中对Attv多神经病的认识有所提高,但误诊的率仍然很高,导致诊断的重大延迟和应计性残疾。及时诊断很重要。ttr蛋白稳定剂差异和tafamidis可以延迟疾病的进展。此外,TTR基因沉默药物,patisiran和Inotersen导致TTR产生降低了80%,导致周围神经病和心脏功能障碍的稳定或略有改善,以及生活质量和功能的改善。相当大的治疗进展提出了其他挑战,包括优化ATTRV神经病中的诊断技术和管理方法。本评论重点介绍了诊断技术,当前和新兴管理策略以及ATRV疾病进展的生物标志物发展的关键进展。