简介 通过对模型生物的分析,我们获得了大量有关影响肝脏 (1) 等实体器官发育的信号通路的信息。然而,一个尚未解决的主要问题是确定这些通路在人类实体器官发育中的作用。某些遗传疾病引起的异常为我们提供了有关参与人类器官发育的关键信号通路的信息。例如,阿拉吉尔综合征 (ALGS) 是一种常染色体显性遗传病(具有不完全外显率),主要 (94%) 由编码 NOTCH 配体 JAG1 (2, 3) 的基因 ( JAG1 ) 突变引起。该病的临床病程以严重的肝脏异常为主,其主要病理特征是胆管稀少,这是由于胆道系统发育异常所致。已发现大量的 JAG1 突变,这些突变遍布整个蛋白质:约 80% 导致蛋白质截短,8% 为全基因缺失,12% 为错义突变 (4)。在具有 JAG1 突变的受试者中观察到的临床特征具有很大的异质性。例如,在 ALGS 患者的 53 名 JAG1 突变阳性亲属中,只有 11 名具有可诊断为 ALGS 的临床特征,其中 9 名亲属有心脏异常但没有肝病 (5)。各种心血管异常也与 ALGS 有关。其中,法洛四联症 (TOF) (6) 尤其令人感兴趣,7%–13% 的 ALGS 患者 (7) 会患上法洛四联症。TOF 是最常见的复杂先天性心脏病;它与几种不同的遗传性疾病有关,并具有以下特征:腹隔缺损、主动脉骑跨、肺动脉狭窄和右心室肥大(8)。在具有典型 TOF 特征但没有肝病的受试者中已经发现了 JAG1 突变(9)。尽管已经发现了许多 JAG1 突变,但关于 JAG1 突变引起的临床特征的异质性的一个基本问题仍未得到解答:它是由不同的 JAG1 突变的影响引起的,还是由遗传背景中的其他元素决定的?JAG1 是 5 种 Notch 信号配体之一(4)。NOTCH 蛋白是一个高度保守的跨膜受体家族(10),在细胞命运决定(11, 12)、胆道发育(13, 14)和肝癌(15, 16)中发挥重要作用。尽管已经获得了有关 NOTCH 信号通路的大量信息,但我们尚未完全了解人类 ALGS 肝病的病理生物学。Notch 信号的减少如何阻碍胆管形成?基于 Notch 通路的一般作用机制,人们认为,非上皮细胞中 JAG1 表达的降低与胆管细胞在形成胆管时相互作用有关。
抽象背景:多种基因剂量障碍(GDDS)增加了精神障碍的风险,但是到目前为止,GDD对人脑的影响的表征是零散的,几乎没有对不同GDD的多个大脑特征的同时分析。方法:在这里,通过3种非倍性综合征的多模式神经影像学(xxy [总n = 191,92个对照参与者],XYY [总n = 81,47个对照参与者]和三体第21和三体21 [总n = 69,41个对照参与者],我们系统地介绍了超级X和超级X的chrom,y和chrom y 13不同的宏观结构,微结构和功能成像 - 衍生表型(IDP)。结果:结果表明,GDD和IDP的皮质变化有相当多的多样性。IDP变化的这种变化突显了单独研究GDD效应的局限性。在所有IDP更改图中的集成揭示了每个GDD的皮质变化的高度不同的结构,以及部分合并到所有3个GDD中很明显的皮质脆弱性的常见空间轴上。这个共同的轴与行为定义的精神疾病的共同皮质变化表现出很强的一致性,并且在特定的分子和细胞特征方面富含。结论:在3个非整倍性中使用多模式神经影像学数据表明,不同的GDD施加了人脑中不同的变化识别,这些变化是根据所考虑的成像方式而广泛不同的。嵌入在这种变化中的是共同多模式变化的空间轴,与精神病障碍之间的大脑变化保持一致,因此代表了神经科学中未来翻译研究的主要高优先级目标。
Thomas Minten 1 *、Nina B. Gold 2 * †、Sarah Bick 3,4,5、Sophia Adelson 6,7、Nils Gehlenborg 8、Laura M. Amendola 9、François Boemer 10、Alison J. Coffey 9、Nicolas Encina 11,12,13、Bianca E. Russell 14、Laurent Servais 15,16、Kristen L. Sund 17、Petros Tsipouras 18、David Bick 19、Ryan J. Taft 9、Robert C. Green 5,12,20,21(代表 ICoNS 基因列表小组委员会)
疾病关联的遗传证据经常被用作选择复杂常见疾病的药物靶标的基础。同样,已经证明通过基因或蛋白质相互作用网络传播遗传证据可以准确推断出无法观察到直接遗传证据的基因上的新型疾病关联。然而,缺乏将这些药物发现方法结合的实用性的经验检验。在这项研究中,我们研究了对648个英国Biobank GWAS的分析引起的遗传关联,并评估是否通过历史临床试验数据来衡量,成功的药物靶标是否将被鉴定为直接遗传命中的靶标富含成功的药物靶标。我们发现,由蛋白质复合物和配体 - 受体对等特定功能连接形成的蛋白质网络适用于即使是幼稚的内guin-sysosociation网络传播方法。此外,应用于全球蛋白质 - 蛋白质相互作用网络和途径数据库的更复杂的方法也成功地检索了富含临床成功药物靶标的靶标。我们得出结论,遗传证据的网络传播可用于药物靶标识别。
摘要 16 17 人们普遍认为,疾病关联的遗传证据是选择复杂常见疾病药物靶点的坚实基础,通过基因或蛋白质相互作用网络传播遗传证据可以准确推断出没有直接遗传证据的基因上的新疾病关联。然而,一直缺乏将这些信念结合起来用于药物发现的效用的经验检验。22 23 在本研究中,我们检查了从 648 个英国生物银行 GWAS 分析中产生的遗传关联,并评估根据历史临床试验数据衡量,被确定为直接遗传命中代理的靶点是否富集了成功的药物靶点。26 27 我们发现由特定功能连接(如蛋白质复合物和配体-受体对)形成的蛋白质网络适用于甚至是幼稚的关联网络传播方法。此外,应用于全球 30 蛋白质-蛋白质相互作用网络和通路数据库的更复杂的方法也成功检索了 31 临床成功药物靶标富集的靶标。我们得出结论,遗传证据的网络传播应该用于药物靶标识别。 33 34
(onasengene abeparvovec)获得FDA和EMA的批准,用于体内腺相关病毒介导的基因替代疗法,用于脊柱肌肉萎缩。EMA批准Libmeldy®不久,这是一种用慢病毒载体转导的自体CD34阳性干细胞的体内基因疗法,用于治疗定向白细胞症。这些成功可能是发展中许多新的基因疗法的首次,这些基因疗法主要是针对基因置换术的丧失功能丧失突变疾病(例如,甲状腺癌疾病,粘多糖糖糖,神经节蛋白),或者较少,较少的毒性突变疾病,通过毒性 - 官能突变疾病,通过毒性突变疾病,通过疗法的疗法(及其疗法)的疗法(及其疗法)(amp ef)(am)。硬化症,亨廷顿氏病)。此外,正在探索某些疾病的基因组编辑作为基因疗法的使用,但到目前为止,这种疾病仅在治疗粘多糖治疗时才进行了临床测试。基于针对罕见的遗传中枢神经系统疾病的大量计划,持续和完成的临床试验,可以预期,几种新型基因疗法将获得批准并在不久的将来获得。对于这种情况的深入表征,对应用基因治疗平台的短期和长期影响,安全方面和药效学的深入表征。
参考基因组是比较个人基因组以推断临床变异的基线标准。广泛使用的参考基因组 GRCh38 包含间隙和未解析的碱基,尤其是在复杂区域,这可能会影响变异的发现。相比之下,无间隙端粒到端粒 CHM13 (T2T-CHM13) 参考基因组可用于评估基因组的困难区域。光学基因组图谱 (OGM) 是一种用于结构变异识别的成像技术,与传统细胞遗传学方法相比,其分辨率有所提高。我们的研究展示了 T2T-CHM13 参考基因组在复杂区域中增强结构变异 (SV) 检测的实用性。我们通过两个临床病例说明了这一点,其中与 T2T-CHM13 的改进比对导致关键 SV 的置信度得分显著提高。我们展示了更新后的 T2T-CHM13 参考的临床诊断结果有所改善,并提倡采用它。
CPS + EG,临床阶段,雌激素受体状态,等级和治疗后病理阶段评分系统; HR+,激素受体阳性; PCR,病理完全反应; TNBC,三阴性乳腺癌。CPS + EG,临床阶段,雌激素受体状态,等级和治疗后病理阶段评分系统; HR+,激素受体阳性; PCR,病理完全反应; TNBC,三阴性乳腺癌。
† 通讯作者 ** 见附录 A 中的 ICoNS 基因列表贡献者作者列表 *** 见附录 B 中的国际新生儿测序联盟 (ICoNS) 作者列表 通讯地址:Nina B. Gold,医学博士,麻省总医院儿童部,医学遗传学和代谢科,175 Cambridge Street,波士顿,MA 02114,[ ngold@mgh.harvard.edu ] 1 鲁汶天主教大学;2 麻省总医院,儿科;哈佛医学院,儿科;3 波士顿儿童医院;4 麻省总医院;5 哈佛医学院;6 布莱根妇女医院;7 斯坦福医学院;8 哈佛医学院,生物医学信息学系;9 列日大学,CHU Liege;10 Illumina Inc.;11 ICoNS;12 Ariadne Labs; 13 哈佛大学陈曾熙公共卫生学院;14 费拉拉大学医学系,医学科学系,医学遗传学部;15 弗莱堡大学医学中心,神经儿科和肌肉疾病系;16 加州大学洛杉矶分校,大卫·格芬医学院,人类遗传学系,临床遗传学部;17 牛津大学;18 列日大学;19 Nurture Genomics;20 FirstSteps-BNSI;21 麻省总医院,病理学系,分子医学实验室;22 哈佛医学院,病理学系;23 Broad 研究所;24 Genomics England;25 麻省总医院布莱根分院