• RNA 介导的基因表达 (RNA i , ASO) 涉及使用小 RNA 分子 (例如 siRNA、miRNA) 来沉默导致疾病的特定基因。这可用于治疗多种疾病,包括病毒感染、癌症和遗传疾病。通过阻止有害蛋白质的产生,RNAi 可以帮助防止疾病进展并改善患者的预后 • mRNA (信使 RNA) 疗法涉及使用合成的 mRNA 分子在患者体内产生治疗性蛋白质。这种方法可用于治疗遗传疾病以及癌症和传染病等疾病。合成的 mRNA 使用脂质纳米颗粒或其他递送方法递送到细胞中,旨在使靶细胞能够产生治疗性蛋白质
摘要:RNA 编辑旨在通过改变转录水平的基因表达来治疗遗传疾病。将定点 RNA 靶向机制与工程脱氨酶配对,可以可编程地校正 RNA 中的 G > A 和 T > C 突变。这为一系列遗传疾病提供了一种有前途的治疗方法。对于由大基因点突变引起的遗传性视网膜变性(不适合单腺相关病毒 (AAV) 基因治疗,例如 USH2A 和 ABCA4),校正 RNA 提供了一种基因替换的替代方法。由于对 RNA 进行的编辑具有短暂性和潜在可逆性,因此 RNA 而不是 DNA 的基因组编辑可能提供更好的安全性。本综述考虑了当前的定点 RNA 编辑系统,以及将其转化为临床治疗遗传性视网膜变性的潜力。
代谢途径是复杂且相互交织的。定义与遗传疾病直接相关,其中大多数具有毁灭性的表现。鞘脂采用的代谢途径是多种多样的,并用神经酰胺物种作为鞘脂中介代谢和功能的枢纽。鞘脂是具有多种细胞功能的生物活性脂质。在功能,某些鞘脂的功能,缺乏效率或过度生产方面与许多遗传和慢性疾病有关。在这篇最新的评论文章中,我们努力收集有关鞘脂代谢,其酶和调节的最新科学证据。我们阐明了鞘脂代谢在多种遗传疾病以及神经和免疫系统疾病中的重要性。这是对鞘脂生物化学领域状态的全面综述。
使用DNA序列多态性的摘要DNA技术为医学和法医学领域带来了一个新系统,尤其是用于研究遗传疾病和肿瘤抑制基因的研究,以及用于鉴定个人以进行法医目的。 基于受影响家庭多态性等位基因的分离的连锁分析有助于鉴定许多遗传疾病。 我们通过所谓的“位置克隆”和Colorectal癌症患者的APC Gene的APC Gene患者的所谓“位置克隆”,并通过所谓的“位置克隆”和特征性的生殖和体细胞突变来分离大量的多态性DNA标记,称为VNTR(可变的串联重复)标记,并鉴定出负责家族性腺瘤性息肉病(FAP)的APC基因。 此外,我们在结直肠癌发生期间还应用了遗传信息,以对结直肠癌的淋巴结转移的敏感诊断。 关键词RFLP,VNTR,链接分析,位置克隆,APC使用DNA序列多态性的摘要DNA技术为医学和法医学领域带来了一个新系统,尤其是用于研究遗传疾病和肿瘤抑制基因的研究,以及用于鉴定个人以进行法医目的。基于受影响家庭多态性等位基因的分离的连锁分析有助于鉴定许多遗传疾病。我们通过所谓的“位置克隆”和Colorectal癌症患者的APC Gene的APC Gene患者的所谓“位置克隆”,并通过所谓的“位置克隆”和特征性的生殖和体细胞突变来分离大量的多态性DNA标记,称为VNTR(可变的串联重复)标记,并鉴定出负责家族性腺瘤性息肉病(FAP)的APC基因。此外,我们在结直肠癌发生期间还应用了遗传信息,以对结直肠癌的淋巴结转移的敏感诊断。关键词RFLP,VNTR,链接分析,位置克隆,APC
基因组编辑技术的进步使得利用酶的功能进行有效的 DNA 修饰成为可能,这对治疗人类遗传疾病具有巨大的潜力。已经开发出几种核酸酶基因组编辑策略来纠正基因突变,包括大核酸酶 (MN)、锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和成簇的规律间隔短回文重复序列-CRISPR 相关蛋白 (CRISPR-Cas)。CRISPR-Cas 已被进一步设计为创建切口酶基因组编辑工具,包括具有高精度和高效率的碱基编辑器和主要编辑器。在这篇综述中,我们总结了用于治疗遗传疾病的核酸酶和切口酶基因组编辑方法的最新进展。我们还强调了这些方法转化为临床应用的一些局限性。
2021 年,我们科学家的专注和决心促成了许多可能改变生活的发现。其中包括创建一种“模板”,帮助抗癌分子突破血脑屏障,靶向已扩散到大脑的癌症;寻求解决炎症性皮肤病根本原因的潜在突破;以及一种导致体重意外减轻、肌肉萎缩和疲劳的严重代谢疾病的潜在治疗方法。我们正在利用我们的疫苗专业知识来应对莱姆病等蜱传疾病,并扩展我们的 mRNA 平台,以研究该技术在帮助预防流感和带状疱疹以及治疗肝脏、肌肉和中枢神经系统罕见遗传疾病方面的潜力。我们与合作伙伴 Vivet Therapeutics 合作,开发了一种基因治疗候选药物,旨在解决一种罕见遗传疾病——威尔逊病的根本原因。
学习结果是生物学和遗传学的综合教学旨在为学生提供生活系统的功能逻辑,并特别关注细胞的特性和功能作为生活的基本单位。学生将学习调节细胞过程和活动的统一机制以及细胞之间的相互作用;关于生物单位多样性的原理,与它们的结构和功能特征以及基因表达方式有关。这种分析将在个人分化和进化框架内发生。也将解决分子生物学和遗传学的基本原理;特别重点将放在与医学生有关的方面,例如疾病的细胞和分子碱以及药物对细胞结构和功能的影响。医学遗传学模块将提供有关单基因,染色体和多因素疾病的遗传的关键知识。最后,学生将获得诊断遗传疾病的主要分析方法,将能够区分遗传疾病的主要类别并识别其传播方式。
•临床研究为未来的医疗保健提供了•神秘的显微镜!临床医学的组织学•开发数字解剖学资源(包括解剖经验)•流行病和大流行病:•欧洲疾病叙事1783-1933•法医毒理学和研究生属性•遗传疾病•遗传疾病:从实验室到临床技术•疾病中的遗传技术•全球和旅行健康范围•健康范围•健康范围•健康范围•确定性范围•确定性•确定性范围•确定范围•确定性!•疼痛管理简介•精确医学介绍•可持续医疗保健和气候变化介绍•医学伦理•医学SSC阶段1:中文-MFL1022•医学SSC阶段1:德国-MFL1024•MFL1024•SSC 1:西班牙-MFL1026阶段:MFL1026•MFL1026灵性和生命终结问题•支持从事乳腺癌的卫生专业人员•外科肿瘤学:大肠癌•妇女健康
对复杂疾病(例如糖尿病)遗传基础的机械理解在很大程度上是由于影响疾病表型的渗透率和/或表现的遗传疾病改良剂的活性而难以捉摸。面对这种复杂性,单基因突变(单基因糖尿病)引起的罕见形式可用于模拟单个遗传因素对胰腺B细胞功能障碍的贡献和葡萄糖稳态的分解。在这里,我们回顾了蛋白质编码和非蛋白质编码遗传疾病修饰对糖尿病亚型发病机理的贡献,以及人类多能干细胞(HPSC)的生成,分化和基因组编辑的最新技术进步如何启用基于细胞疾病模型的发展。最后,我们描述了一种疾病修饰的发现平台,该平台利用这些技术使用诱导的多能干细胞(IPSC)鉴定出新的遗传修饰者,这些干细胞(IPSC)源自由杂合突变引起的单基因糖尿病患者。