Wim H. Bakker Freek D. van der Meer Wim Feringa Gabriel N. Parodi Ambro S. M. Gieske Christine Pohl Ben G. H. Gorte Colin V. Reeves Karl A. Grabmaier Frank J. van Ruitenbeek Chris A. Hecker Ernst M. Schetselaar John A霍恩·克劳斯·坦普利·格里特·胡尼曼·迈克尔·J. C. Weir Lucas L. F. Janssen Eduard Westinga Norman Kerle Tsehaie Woldai
传记:Roland Sauerbrey 于 1981 年获得德国维尔茨堡大学物理学博士学位。在德克萨斯州休斯顿莱斯大学完成博士后研究后,他成为维尔茨堡大学的助理教授。1985 年至 1994 年,他是莱斯大学电气工程系的成员。1994 年,Sauerbrey 博士接受了德国耶拿弗里德里希席勒大学物理学教授的职位。2002 年至 2004 年,他还担任德国物理学会主席。自 2006 年 4 月以来,他一直担任德累斯顿-罗森多夫研究中心的科学主任,同时还担任德累斯顿工业大学的量子光学教授。Sauerbrey 博士的科学工作主要涉及强激光与物质的相互作用以及激光的发展。
遥感时代被认为始于 1858 年,当时气球驾驶员 G. Tournachon(别名 Nadar)从他的气球上拍摄了巴黎的照片。后来,信鸽、风筝、飞机、火箭和无人气球也被用于早期成像。然而,遥感的历史可以与光学和航空学的发展和理解联系起来。亚里士多德(公元前 300 年)被认为是第一个进行光学实验的人。伽利略·伽利莱(1609 年)和艾萨克·牛顿爵士(1666 年)科学地解释了光学和光谱学。系统的航空摄影始于第一次世界大战期间,用于军事监视和侦察目的。在第一次世界大战期间,飞机被大规模用于这些目的,因为飞机被证明是比气球更可靠、更稳定的地球观测平台。然而,航空摄影和照片解译的重要发展发生在第二次世界大战期间。在此期间,近红外摄影、热传感和雷达等其他成像系统也得到了发展。
摘要 本文总结了 Landsat 的政策历史,并研究了其在陆地遥感科学发展、与土地使用相关的实际应用和市场中的地位。特别是,它确定了为遥感陆地数据和信息产品的商业市场奠定基础的关键步骤。本文进一步分析了政府政策与遥感技术发展之间的相互作用。它得出结论,地球观测数据市场发展的主要力量之一是信息技术的创造,包括功能强大的个人计算机、地理信息系统 (GIS) 软件、CD-ROM 和互联网。这些技术和其他技术正在创建将遥感数据纳入更广泛的信息市场所需的基础设施。
遥感频率分配 (FARS) 技术委员会 (TC) 成立于 2000 年,是 IEEE 地球科学和遥感学会 (GRSS) 社区讨论影响遥感领域的频谱管理问题并为监管世界提供统一接口的一种方式。目前,FARS 成员包括 84 名工程师和科学家,代表 10 个国家的政府、学术和工业实体。频谱管理已成为 GRSS 许多成员的重要问题。在过去十年中,从事被动和主动微波遥感的 GRSS 成员越来越多地应对由于射频干扰 (RFI) 导致的测量错误。因此,FARS TC 的职责是:在 GRSS 成员和频率监管流程之间进行对接,包括教育
1 不来梅大学环境物理研究所,FB 1,P.O.Box 330440,D-28334 不来梅,德国 2 METAIR AG,Airfield Hausen am Albis,CH-8915 Hausen am Albis,瑞士 3 苏黎世应用技术大学,CH-8400 温特图尔,瑞士 4 柏林自由大学空间科学研究所,Carl-Heinrich-Becker-Weg 6-10,D-12165 柏林,德国 5 ESA / ESTEC,Keplerlaan 1,2201 AZ 诺德维克,荷兰
GIS 应用成功的关键在于能否获得详细的空间数据。虽然遥感信息和基于 GPS 的实地调查有助于填补一些数据空白,但仍然很难在与运营影响相关的地理范围内获得大量信息。社会经济数据尤其如此,这些数据无法通过远程方式获取,也无法从零散的观测信息中插值而来。此类信息的主要来源——人口普查和调查——并不能满足所有的信息需求。前者很少进行,而且只提供最基本的信息,而后者可以提供详细信息,但通常无法提供适合运营工作的汇总信息。因此,加强地方层面的正式和非正式空间数据收集能力是当务之急之一。
土地利用和土地覆盖的动态转变已成为有效管理自然资源的关键方面,以及对环境转变的连续监测。这项研究的重点是戈达瓦里河集水区域内的土地使用和土地覆盖(LULC)的变化,评估了土地和水资源开发的影响。利用2009年,2014年和2019年的Landsat卫星图像,该研究通过量子地理信息系统(QGIS)软件的SCP插件采用了监督分类。最大似然分类算法用于评估监督土地使用分类。七个不同的LULC类别 - 耕地,农业用地(休闲),贫瘠的土地,灌木土地,水和城市土地 - 用于分类目的。这项研究揭示了在2009年至2019年的十年中,Go-Davari盆地的土地使用方式发生了很大变化。使用三个卫星/Landsat图像,有监督的分类al-Gorithm和GIS中的分类后变更检测技术对土地使用/覆盖变化的空间和时间动态进行了定量。马哈拉施特拉邦戈达瓦里盆地的总研究区域包括5138175.48公顷。值得注意的是,建筑面积从2009年的0.14%增加到2019年的1.94%。灌溉农田的比例,2009年为62.32%,2019年降至41.52%。灌木土地在过去十年中见证了从0.05%增加到2.05%。主要发现突显了贫瘠的土地,农业用地和灌溉农田的大幅下降,并与林地,灌木土地和城市土地的扩张并列。分类方法的总体精度为80%,卫星图像的Kappa统计数据为71.9%。总体分类准确性以及2009年,2014年和2019年监督土地使用土地覆盖的Kappa价值
• 遥感数据政策最初于 2001 年推出,并于 2011 年更新。 • 全球环境发展如此迅速,政策更新势在必行。 • 印度空间遥感政策草案(SpaceRS Policy-2020)于 2020 年 11 月发布,征求公众意见, • 2020 年政策表明,印度政府打算促进印度工业在印度境内外开展空间遥感活动; • 轻松访问空间遥感数据,“敏感数据和信息”除外; • 为印度商业工业提供及时、响应迅速的监管环境,以建立和运营空间遥感系统等。 • 虽然对“敏感数据”的访问限制有了很大放宽,现在将其定义为“地面采样距离优于 50 厘米的非常高分辨率数据”,但仍未达到美国等国家为商业图像分发设定的限制。 • 可能,所有非常高分辨率的数据都不一定敏感,尽管所有敏感数据都可能作为子集归入非常高分辨率数据。 • 因此,敏感数据的标准可以更加细化,以减轻印度工业的竞争劣势。 • 此外,指南将扩展到涵盖全球背景下的不同商业安排模式,因为在当前环境下,私营部门的新创业公司很有可能在国内和海外市场寻求生存。 https://www.isro.gov.in/sites/default/files/spacers_policy_ngp_2020_draft.pdf