与从 LiDAR 数据和多视图影像重建相比,倾斜影像重建是大规模城市建模的重要研究问题和经济解决方案。然而,建筑物足迹和立面的部分不可见性、严重的阴影效应以及大范围区域内建筑物高度的极端变化等若干挑战将现有的基于单目影像的建筑物重建研究限制在某些应用场景中,即从近地面影像建模简单的低层建筑物。在本研究中,我们提出了一种新颖的单目遥感影像 3D 建筑物重建方法,解决了上述困难,从而为更复杂的场景提供了一种有吸引力的解决方案。我们设计了一个多任务建筑物重建网络 MTBR-Net,通过四个语义相关任务和三个偏移相关任务来学习倾斜影像的几何属性、3D 建筑物模型的关键组件及其关系。网络输出通过基于先验知识的 3D 模型优化方法进一步集成,以生成最终的 3D 建筑模型。在公共 3D 重建数据集和新发布的数据集上的结果表明,与目前最先进的方法相比,我们的方法将高度估计性能提高了 40% 以上,将分割 F1 分数提高了 2% - 4%。
摘要:本研究研究了描绘变速箱,森林,农田和山脉的航空图像的分类。要完成分类工作,使用卷积神经网络(CNN)体系结构从输入照片中提取功能。然后,使用SoftMax对图像进行分类。要测试模型,我们使用90批量的ADAM优化器和0.001的学习率将其运行了十个时期。培训和评估都是使用数据集进行的,该数据集将Google卫星图像与MLRNET数据集融合在一起的图片。综合数据集包含10,400张图像。我们的研究表明,转移学习模型和MobilenetV2,对于景观分类非常有效。这些模型是实际使用的好选择,因为它们在精度和效率之间很好地结合在一起。我们的方法在内置的CNN模型上以87%的总体准确度获得了结果。此外,我们通过利用验证的VGG16和MobilenEtV2模型作为传输学习的起点,达到更高的精度。具体来说,VGG16的精度为90%,测试损失为0.298,而MobileNetV2的精度优于两个模型,其精度为96%,测试损失为0.119;结果表明,使用Mobilenetv2进行转移学习的有效性来对传输塔,森林,农田和山脉进行分类。关键字:航空图像,图像分类,卷积神经网络(CNN),转移学习
Microphytobenthos(MPB)对河口初级生产产生了重大贡献,因此量化其生物量对于评估其生态系统功能至关重要。传统的抽样方法是劳动的,在逻辑上具有挑战性,无法提供MPB生物量的全面空间分布图。卫星图像提供了一种可行的替代方法,用于绘制各种时间和空间分辨率的大面积。但是,在该场中使用了与原位采样的少量平方Centi米一致的空间分辨率的成像设备。这使得将现场生物量测量与远程感知的辐射测量值相关联。在这项研究中,在不同高度的无人机(UAV)上安装了两个类似的多光谱传感器,以及在〜1 m高度上获得图像的定制设备上,以收集guadalquivir estuta(SpataLquivir estuta)mudflats mudflats mpb Biofilms的非常高的空间分辨率反射数据。此外,使用高光谱谱仪获得原位反射率进行验证。同时,使用2 mM深度接触Corer方法收集了MPB样品,该方法通过高性能液相色谱(HPLC)分析,以测量主要MPB颜料的浓度。为了评估MPB色素和不同反射率的光谱指数,使用了广义的线性混合效应模型(GLMM),从而实现了叶绿素与所有测试的光谱指数之间的显着正相关关系。这些模型用于绘制微卵巢生物量,在
牲畜具有很高的经济价值,并且经常在大型农场中对其进行监测是一项劳动密集的任务,而且昂贵。关于单个动物及其周围环境的智能数据的出现为早期发现和预防疾病,更好的动物护理和可追溯性,更好的可持续性和农场经济学开辟了新的机会。精确的牲畜农业(PLF)依靠牲畜数据的恒定和自动收集来支持农民,兽医和当局做出的专业知识和管理决定。无人机的高流动性与高水平的自主权,传感器驱动的技术和AI决策能力相结合可以为农民提供许多优势,从而利用大型农场的每个角落利用即时信息。这项研究的主要目标是i)探索各种基于无人机的基于视觉的遥感模式,尤其是视觉带感应和热成像仪,ii)ii)ii)ii)ii)ii)ii)ii)收集具有各种参数的数据,ii)ii)与研究人员建立良好的高级式富有融合式融合式融合式融合式融合的方法,以建立各种参数方式。收集的数据表明,可以利用从多种传感器模式获得的牲畜的独特特征的融合,以帮助农民通过PLF在大型农场中体验更好的牲畜管理。
抽象目的 - 人类正在走向不朽的生活吗?如果是这样,哪些社会领域在实现这一目标中发挥了积极作用?为了理解这一点,该研究探讨了永生与健康和医疗旅游业之间的关系,以寻求它们之间的潜在关系,并最终询问有关这些旅游部门增长的困难问题,以及对他们进行更大监管的潜在需求。设计/方法论/方法 - 采用务实的哲学方法,并通过检查次要来源以及已发表的材料和报告的精致信息,该研究介绍了原始的理论知识以及探索旅游业和人类永生的模型。调查结果 - 本文认为,当今健康和医疗市场的持续增长可能导致一个世界,在我们的世界中,人类主义者和半机器人都在我们的世界中,甚至从智人接管。该研究提出了一个模型,强调了健康和医疗旅游市场的潜在作用,这说明了未来消费者服务的潜力,这些服务可能会进一步推动寻找永生的搜索。因此,这种市场和消费者的欲望是如何(在)直接支持人文对(非人类)不朽生存的渴望的。独创性/价值 - 如今,个人受到健康实践,医疗和化妆品的驱动,并愿意环游世界,以寻找能够执行所需程序或寻求价格更便宜的公司。这项研究提供了对这些复杂关系的新见解,并绘制了健康与医疗实践之间的隶属关系以及不朽的概念。
由于遥感中的空间冗余,含有丰富信息的稀疏令牌通常参与自我注意事项(SA),以减少计算中的总体令牌数量,从而避免VI-Sion变形金刚中的高计算成本问题。但是,这种方法通常通过手工制作或平行不友好的设计获得稀疏的令牌,从而提出了挑战,以在效率和性能之间达到更好的平衡。与它们不同,本文建议使用可学习的元代币来制定稀疏令牌,这些代币有效地学习了关键信息,同时提高了推理速度。从技术上讲,元代币首先是通过跨注意力从图像令牌初始初始化的。然后,我们提出双重交叉注意(DCA),以促进图像令牌和元代币之间的信息交换,在该图像令牌和元代币之间,它们在双分支结构中作为查询和钥匙(值)代币,可显着降低与自我注意相比的计算复杂性。通过在早期阶段使用DCA,具有密集的视觉令牌,我们获得了具有各种尺寸的层次结构Lemevit。分类和密集的词典任务的结果表明,Lemevit具有显着性1。7×加速,更少的参数和竞争性能,并且在效率和性能之间取得了更好的权衡。该代码在https://github.com/vitae-transformer/lemevit上发布。
遥感是通过技术设备获取有关所需位置的信息的过程,我们将我们从一定距离放置在选定位置,并在空间,光谱,辐射测量和时间分辨率中分析,显示和监视它,并通过任何距离进行测量,而无需进行任何距离[1]。遥感用于制图,水文学,地质,林业,农业,国防,安全和空间的领域。有具有数据集的平台,例如前哨,Landsat,Maxar,Planet,UC Merced,EuroSat,patternnet,Spacenet和Google Earth Engine。在图像处理和数据挖掘技术中进行了改进,以解决提供大数据和分析数据[2]的问题,而SATLASPRETRAIN [3]数据集是已使用的大数据集之一。
摘要 未来的太空任务将处理和分析机载图像,对飞行计算提出了更高的要求。即使与笔记本电脑和台式电脑相比,传统飞行硬件提供的计算能力也有限。新一代商用现货 (COTS) 处理器,如 Qualcomm Snapdragon,可在小尺寸重量和功率 (SWaP) 下提供大量计算能力,并以图形处理单元 (GPU) 和数字信号处理器 (DSP) 的形式提供直接硬件加速。我们在 Qualcomm Snapdragon SoC 上对各种仪器处理和分析软件(包括机器学习分类器)进行了基准测试,该 SoC 目前由国际空间站上的 HPE 星载计算机-2 (SBC-2) 托管。索引术语 — 边缘处理、空间应用、机器学习、人工智能
摘要。森林变化检测对于可持续森林管理至关重要。由于毁林(例如野火或开发活动引起的伐木)或造林而导致的森林面积变化会改变森林总面积。此外,它还会影响可用于商业目的的可用库存、碳排放引起的气候变化以及森林栖息地估计的生物多样性,这对于灾害管理和政策制定至关重要。近年来,林业人员依靠手工制作的特征或双时间变化检测方法来检测遥感图像中的变化以估计森林面积。由于手动处理步骤,这些方法很脆弱且容易出错,并且可能产生不准确的(即低估或高估)分割结果。与传统方法相比,我们提出了 AI-ForestWatch,这是一个用于森林估计和变化分析的端到端框架。所提出的方法使用基于深度卷积神经网络的语义分割来处理多光谱空间图像,通过自动从数据集中提取特征来定量监测森林覆盖变化模式。我们的分析完全由数据驱动,并使用 2014 年至 2020 年的扩展版(带植被指数)Landsat-8 多光谱影像进行。作为案例研究,我们估算了巴基斯坦 15 个地区的森林面积,并生成了 2014 年至 2020 年的森林变化图,在此期间,这些地区开展了主要的造林活动。我们的批判性分析显示,15 个地区中有 14 个地区的森林覆盖率有所提高。AI-ForestWatch 框架及其相关数据集将在发布后公开,以便其他国家或地区可以采用。© 作者。由 SPIE 根据知识共享署名 4.0 未移植许可证出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JRS.15.024518]
更改检测是遥感应用程序中最重要的方面之一。但是,由于图像采集的有限条件,从相同类型的遥控传感器获得的图像通常用于监视长期土地使用和土地覆盖(LULC)的变化。由于航空航天技术的发展和新的光学遥控传感器,LULC更改检测可以很好地使用多传感器和多分辨率图像进行。本文的主要贡献是验证通过将不同的更改检测方法应用于多传感器和多分辨率遥感图像来执行长期LULC更改检测是可行且可行的。在这项研究中,从1998年至2018年,在Landsat,Quickbird,Worldview-4和GF-2图像上使用了不同的变更检测方法,以检测中国Chang'an University的Weishui校园的LULC变化。结果表明,使用LandSat-5图像的直接光谱比较方法比使用LandSat-7图像在1998年至2008年之间更有效地检测到1998年至2008年之间的LULC变化。然而,在2008 - 2018年间,基于对象的变更检测方法比使用时间序列的高分辨率图像来监视校园中LULC更改的分类后方法更适用。这项研究可用作使用多传感器和多分辨率遥感图像的参考,以及在LULC变化检测场中不同变化检测方法的组合。