摘要 — 量子技术已在信息处理和通信等许多领域得到应用,它有可能改变我们在微波和毫米波领域的遥感方法,从而产生被称为量子雷达的系统。这种新一代系统并不直接利用量子纠缠,因为后者太“脆弱”,无法像雷达场景那样在嘈杂和有损的环境中保存,而是利用量子纠缠产生的高水平相干性。量子照明是一种利用非经典光态的量子相干性进行遥感的过程。它允许以光学或微波光子的形式生成和接收高度相关的信号。通过将接收到的信号光子与与发射光子纠缠的光子相关联,可以在所有接收到的光子中清楚地区分回声与背景噪声和干扰,从而将遥感的灵敏度提高到前所未有的水平。因此,原则上可以检测到非常低的交叉雷达截面物体,例如隐形目标。目前,关于量子雷达收发器的实验报道很少。本文旨在总结量子雷达的最新进展,介绍其基本工作原理,并提出这种技术可能出现的问题;其次,本文将指出光子学辅助量子雷达的可能性,并提出光子学是量子科学和遥感技术可以有效相互融合的理想领域。
[2] M. Yamada等人,“对车辆部署的道路表面状况检测技术的研究”,JSAE Review,2003,24(2):183-188。[3] L. Colace等人,“一种近红外的光电方法来检测道路状况”,《工程学的光学和激光》,2013年,51(5):633-636。[4] R. Finkele,“使用76 GHz的极化毫米波传感器在路面上检测冰层”,《电子信》,1997,33(13):1153-1154。
在最初发表的文章的版本中,雅各布·纳斯莱奇(Jacob Nesslage)被列为错误的关联公司,现在已将加利福尼亚大学默塞德分校的民事与环境工程系修改为美国加利福尼亚州默塞德大学,加利福尼亚州默塞德,在线版本的在线版本。
本文系统地回顾了机器学习算法,地理信息系统(GIS)和遥感(RS)技术的综合使用,以预测美国的降雨模式和洪水事件,气候变化的越来越高,降雨量的准确预测和洪水风险的准确预测变得至关重要。GIS可以实现易洪水区域的空间分析和映射,支持风险评估和灾难准备。rs贡献实时卫星图像和环境数据,对于跟踪降雨模式和评估表面条件至关重要。机器学习算法通过提供预测性建模功能来增强这些技术,从而可以更准确地预测降雨强度和洪水潜力。本文探讨了GIS,RS和机器学习之间的协同作用,强调了它们对提高灾难管理中洪水预测准确性和决策的综合影响。的关键挑战,包括数据异质性,计算需求和不同数据集的集成。此外,本文还审查了有关数据共享和技术采用的当前政策,强调了对支持创新的监管框架的需求,同时确保数据隐私和准确性。通过对最近的研究的分析,本文介绍了将这些集成技术用于洪水预测的优势和限制的全面概述,从而提供了对未来方向的见解,并提出了增强洪水管理系统的建议。审查得出的结论是,综合的GIS,RS和机器学习应用程序将需要解决与数据相关的挑战,并促进整个机构之间的协作努力,以增强美国的洪水预测和弹性能力
摘要:人类活动是导致气候变化的重要原因,大气中的CO₂水平上升。已经开发了几种碳捕获和隔离(CCS)方法来解决此问题。未驾驶的航空车(UAV)和遥感技术正在出现,这是对大气碳捕获计划的效率和有效性的显着提高。本研究使用无人机和遥感技术来监视,量化和管理大气co级水平。此外,该研究还探讨了整合机器人无人机技术的含义,并强调了它们为可持续未来做出贡献的能力。这些技术结合了现代数据收集和分析方法,为缓解气候变化和长期环境可持续性提供了有希望的答案。
防止风暴和沙尘暴一直是干旱和半干旱地区的主要问题,因为它们对环境产生了负面影响。这项研究旨在进行遥控感和机器学习技术,以建模,监视和预测伊朗东北部风侵蚀的风险。通过对相关研究的检查进行了全面的综述,从而鉴定了八个与现场数据相关性最高的遥感指标。随后使用这些指标来模拟研究区域中风侵蚀的风险。采用了各种方法,包括随机森林(RF),支持向量机(SVM),梯度提升机(GBM)和广义线性模型(GLM)来执行建模过程。最终方法利用了模型的加权平均值,SDM统计软件包用于结合不同的方法,以减少对该区域的模拟和监测风侵蚀时的不确定性。建模结果表明,在2008年,RF模型执行了最佳(AUC = 0.92,TSS = 0.82和Kappa = 0.96),而在2023年,GBM模型显示出较高的性能(AUC = 0.95,TSS = 0.79,和Kappa = 0.95)。因此,出现了合奏模型的利用是一种有效的方法,可以减少建模过程中的不确定性。通过采用整体模型,获得的结果准确地描绘了研究区域东北地区的风侵蚀强度升高,到2023年。此外,考虑到气候场景和占据的土地利用变化,预计到2038年,研究区的中部和南部地区的风侵蚀强度将增加23%。考虑了合奏模型的可靠结果,该模型提供了降低的不确定性,可以实施有效的计划,最佳管理和适当的措施来减轻风侵蚀的进展。
PSIPRED工作台是生物科学数据存储库和Web服务的全球生态系统的一部分。这些涵盖了主要数据存储库,例如NCBI,EBI和RCSB PDB(1-3),派生的数据资源,例如字符串,CATH,KEGG,INTERPRO和UNIPROT(4-8),以及诸如EBI WebServices,NCBI Webservices,NCBI Webservices等网络服务。可以通过Elixir Biotools网站(https://bio.tools/)(9)来发现大量的工具和服务作为代码和网络服务。我们已经开发了Psipred Workbench已有近25年了。我们的网站服务提供了各种基于机器学习的工具,专注于表征蛋白质的结构和功能特征。近年来,我们在整合新的基于深度学习的工具和技术方面取得了重大进展。在2018年,我们替换了网络服务器中的每一条代码,并显着改进了这两个工具运行
摘要本评论论文探讨了用于漏油检测和响应的遥感技术的进步,重点是政策框架,实施策略和前景。它检查了国际和国家一级的历史环境,当前技术和政策框架。讨论了整合遥感技术,增强协作和建筑能力的策略。提供了支持技术采用和促进可持续性的政策增强建议。前景包括增强的卫星成像,自动源系统和传感器融合等新兴技术。总体而言,有效实施遥感技术可以改善漏油检测,最大程度地减少环境影响并加强响应工作。关键字:漏油检测,遥感技术,政策框架,
抽象背景。免疫疗法是几种癌症的有效“精确医学”治疗方法。胶质母细胞瘤患者中潜在基因组(放射基因组)的成像签名可能是肿瘤宿主免疫设备的术前生物标志物。经过验证的生物标志物在IM Munotherapy临床试验期间有可能对患者进行分层,如果试验有益,则有助于个性化的新辅助治疗。整个基因组测序数据的使用增加,生物信息学和机器学习的进步使得这种速度可见。我们进行了系统的综述,以确定与胶质母细胞瘤的免疫相关放射基因组生物标志物的发育程度和验证程度。方法。使用PubMed,Medline和Embase数据库进行了PRISMA指南进行系统的审查。定性分析是通过合并Quadas 2工具并要求清单进行的。Prospero注册:CRD42022340968。提取的数据不足以进行荟萃分析。结果。九项研究,所有回顾性,都包括在内。从感兴趣的磁共振成像体中提取的生物标志物包括明显的扩散系数值,相对的脑血体积值和图像衍生的特征。这些生物标志物与肿瘤细胞或免疫细胞的基因组标记或患者存活相关。大多数研究对执行指数测试的偏见和适用性问题具有很高的风险。结论。放射基因组生物标志物具有为胶质母细胞瘤的PATETS提供早期治疗选择的潜力。由这些生物标志物分层的靶向免疫疗法具有允许在临床试验中允许不同的新辅助精度治疗方案。但是,没有验证这些生物标志物的前瞻性研究,并且由于研究偏见而限制了解释,而很少有可推广性的证据。