采伐区的植被状况,以评估植被发展情况并规定实现森林再生目标所需的行动。随着当前对生态系统管理的重视、不断上升的造林处理成本、不断发展的基于计算机的决策支持工具以及对更高责任制的要求,对此类数据的需求日益增加。与数据采集的实地调查方法相关的缺陷(例如高成本、主观性和低空间和时间覆盖率)经常限制决策的有效性。在问题分析中评估了遥感数据补充实地收集的森林植被管理数据的潜力,该问题分析包括全面的文献综述以及在国家研讨会上与遥感和植被管理专家的磋商。在目前可用的传感器中,航空照片似乎提供了最合适的特性组合,包括高空间分辨率、立体覆盖、一系列图像比例、各种胶片、镜头和相机选项、几何校正能力、多功能性和适中成本。提出了一种灵活的策略,采用一系列 1: 10,000、15,000 和 1:500 比例的航空照片:1)准确绘制采伐区地图,2)促进针对特定位置的林业处理、采样、缓冲区、野生动物区等处方,以及 3)监测和记录再生期间特定点的条件和活动。当前的遥感技术不太可能支持需要有关较小植物(<0.5 米高)和/或单个或稀有植物物种的非常详细信息的调查。建议的研究领域包括:1)数字帧相机或其他经济高效的数字成像仪,作为传统相机的替代品,2)基于计算机的数字图像数据分类和解释算法,3)图像测量和物理测量之间的关系,例如叶面积指数和生物量,4)成像标准,5)机载视频、激光高度计和雷达作为补充传感器,6)部分切割系统中的遥感应用。
本文概述了劳登县测绘和地理信息办公室 (OMAGI) 开展的基础地图更新项目。多年来,OMAGI 一直根据发展模式选择性地更新所有基础地图数据,这一过程导致数据混乱。最近,该县的大片连续区域通过立体编辑和摄影测量从航空摄影中更新。地面特征是通过该县的基础地图维护服务合同捕获和归因的。基础地图数据层包括平面(建筑物、道路、各种文化特征)、环境(水文、森林覆盖)和地形(高程轮廓和点高程)特征。许多年度周期(2000 年至今)的基础地图更新都促进了这些图层的开发,现在包括年度数字正射影像的开发。
精准农业是一种新兴的农业技术,它涉及根据具体地点管理每种作物投入,以减少浪费、增加利润和保持环境质量。遥感是一种可用于获取有关土壤和作物状况的各种空间层信息的技术。它允许检测和/或表征一个物体、一系列物体或景观,而无需与传感器进行物理接触。图 1 显示了遥感系统的简单分类。通常,遥感是通过将传感器定位在被观察的物体(目标)上方来进行的。支持传感器的平台因目标上方的高度而异。今天,两种主要的观测平台用于收集遥感数据:基于飞机(空中)和基于卫星。地面传感器也被用于
[2] M. Yamada等人,“对车辆部署的道路表面状况检测技术的研究”,JSAE Review,2003,24(2):183-188。[3] L. Colace等人,“一种近红外的光电方法来检测道路状况”,《工程学的光学和激光》,2013年,51(5):633-636。[4] R. Finkele,“使用76 GHz的极化毫米波传感器在路面上检测冰层”,《电子信》,1997,33(13):1153-1154。
遥感系统通常生成数十甚至数百平方米的平均信息图像——对于大多数生物来说太过粗糙——因此遥感生物多样性似乎是徒劳的。然而,生态学家现在可以使用的传感器的空间和光谱分辨率的进步使得直接遥感生物多样性的某些方面变得越来越可行;例如,区分物种群落,甚至识别单个树木的种类。在直接检测单个生物或群落仍然超出我们能力的情况下,间接方法可以提供有关多样性模式的宝贵信息。这类方法从遥感揭示的生物物理特征中得出有意义的环境参数。
摘要:数字孪生流域是物理流域的虚拟表示,具有同步仿真、虚实交互和迭代优化等特点。数字孪生流域的构建需要具有大范围覆盖、高精度、高分辨率、低延迟等特点的流域数据库。遥感技术的进步为获取流域要素变量提供了新的技术手段。本文对遥感技术在降水、地表温度、蒸散、水位、河流流量、土壤湿度和植被七大要素变量的检索原理、数据现状、评估与比对、优势与挑战、应用和前景进行了全面的概述和讨论。指出遥感可以应用于数字孪生流域的一些功能,如干旱监测、降水预报和水资源管理。但还需要通过数据合并、数据同化、偏差校正、机器学习算法、多传感器联合检索等手段,进一步提高数据精度、时空分辨率、时延等。本文将有助于推进遥感技术在数字孪生流域建设中的应用。
尽管太阳能很受欢迎,但它的性质具有很强的不确定性和天气依赖性,这影响了太阳能发电的商业可行性和投资,特别是对于家庭用户而言。为了稳定太阳能发电的收入,传统的选择有限,例如使用能量存储来汇集非高峰时段多余的太阳能,或使用未来市场的金融衍生品来对冲能源价格。在本文中,我们探讨了一种新颖的参数太阳能保险理念,通过该保险,太阳能电池板所有者可以根据可验证的地理特定指数(表面太阳辐射)为其太阳能发电投保。参数太阳能保险为太阳能发电不足提供了财政补贴的机会,并在地理上摊销了可再生能源发电的波动。此外,我们建议利用区块链和遥感(卫星图像)为太阳能保险提供一个可公开验证的平台,这不仅可以自动化太阳能保险单的承保和索赔,而且可以提高其问责制和透明度。我们利用最先进的简洁零知识证明(zk-SNARK)在现实世界的无需许可的区块链平台以太坊上实现基于区块链的隐私保护太阳能保险。
遥感系统通常生成平均数十甚至数百平方米信息的图像——对于大多数生物来说过于粗糙——因此遥感生物多样性似乎是徒劳的。然而,生态学家现在可以使用的传感器的空间和光谱分辨率的进步使得直接遥感生物多样性的某些方面变得越来越可行;例如,区分物种群落,甚至识别单个树木的种类。在直接检测单个生物或群落仍然超出我们能力的情况下,间接方法可以提供有关多样性模式的宝贵信息。这种方法从遥感揭示的生物物理特征中得出有意义的环境参数。
摘要:亚马逊和新热带森林是全球最重要的生物群落之一,因为它们面积广阔、生物多样性独特,对全球气候以及人类栖息地和资源都具有重要意义。揭示人类存在对这些森林的影响对于我们了解生物多样性、生态系统功能和服务提供潜力至关重要。人类在这些热带雨林的存在可以追溯到 13,000 年前,这种存在的影响引起了激烈的争论。一些作者认为前哥伦布时期的植物驯化对当前亚马逊森林组成具有持续影响。其他作者认为后哥伦布时期对森林组成的影响比前哥伦布时期高出几个数量级。遥感证据作为帮助解决这些争论的一种方式变得越来越有用。在这里,我们回顾了过去、现在和未来使用遥感技术探测亚马逊和其他新热带森林中人类存在的几个历史时期(从考古到后现代社会)的人类基础设施。我们根据留下足迹的活动来定义人类存在,例如定居点、土丘、道路、木材和薪柴的使用、农业、土壤等。最后,我们讨论了使用遥感技术提供必要数据和信息的机会和挑战,以扩大我们对人类在新热带森林居住历史的理解,以及这种人类居住如何影响生物多样性。遥感技术最近在探测前哥伦布时期的人类基础设施方面有很多应用,从对森林砍伐地点的航拍照片进行目视检查到在机载和无人机平台上使用激光雷达探测树冠下的基础设施和较小的定居点。后哥伦布时期,尤其是殖民和帝国主义时期,尚未开展类似的努力。最后,我们对现代(20 世纪和 21 世纪)人类影响的了解毫不奇怪地更加广泛。遥感技术仍未得到充分利用,并且对于此类应用非常有用,新的任务可能会提供以前无法获得的解决方案。然而,系统的地面调查是不可替代的,需要提高遥感和地面调查相结合对人类存在的检测精度。因此,了解新热带森林生物多样性在过去人类存在下是如何发展的,这对于预测亚马逊和其他地区未来变化的方向至关重要。
PSIPRED工作台是生物科学数据存储库和Web服务的全球生态系统的一部分。这些涵盖了主要数据存储库,例如NCBI,EBI和RCSB PDB(1-3),派生的数据资源,例如字符串,CATH,KEGG,INTERPRO和UNIPROT(4-8),以及诸如EBI WebServices,NCBI Webservices,NCBI Webservices等网络服务。可以通过Elixir Biotools网站(https://bio.tools/)(9)来发现大量的工具和服务作为代码和网络服务。我们已经开发了Psipred Workbench已有近25年了。我们的网站服务提供了各种基于机器学习的工具,专注于表征蛋白质的结构和功能特征。近年来,我们在整合新的基于深度学习的工具和技术方面取得了重大进展。在2018年,我们替换了网络服务器中的每一条代码,并显着改进了这两个工具运行