2016 年末,阿勒颇东部落入俄罗斯支持的叙利亚军队手中,朝鲜再次开始加强核试验,遥控飞机 (RPA) 袭击次数最多的一年也结束了。所有这些飞行小时数带来了空中情报、监视和侦察 (ISR) 的上升,导致硬盘溢出,其中包含数百万小时的视频和无数高分辨率静态图像,这些图像被上传到美国空军分布式通用地面系统。1 然而,如果没有图像分析师的处理、利用和分发 (PED),所有这些数据都毫无意义。PED 确保图像质量高,并且感兴趣的对象具有位置、材料、大小和背景特征。周围的机构时间表、其他物体的位置和人员流动都可能影响最终的情报评估。
摘要 — 人类遥控 (RC) 飞行员能够仅使用第三人称视角视觉感知来感知飞机的位置和方向。虽然新手飞行员在学习控制遥控飞机时经常会遇到困难,但他们可以相对轻松地感知飞机的方向。在本文中,我们假设并证明深度学习方法可用于模仿人类从单目图像感知飞机方向的能力。这项工作使用神经网络直接感知飞机姿态。该网络与更传统的图像处理方法相结合,用于飞机的视觉跟踪。来自卷积神经网络 (CNN) 的飞机轨迹和姿态测量值与粒子滤波器相结合,可提供飞机的完整状态估计。介绍了网络拓扑、训练和测试结果以及滤波器开发和结果。在模拟和硬件飞行演示中测试了所提出的方法。
2022 年 11 月 22 日,通用原子航空系统公司 (GA-ASI) MQ-9A 遥控飞机由 GA-ASI 租赁给印度海军,该飞机完成了第 10,000 个飞行小时,为印度国家安全任务提供支持。印度海军运营的两架 MQ-9A 在将近两年的时间里实现了 10,000 个飞行小时的记录,MQ-9A 于 2020 年 11 月 21 日进行了首飞。“印度武装部队对 MQ-9A 对水面部队和印度军舰的超视距 ISR 支持印象深刻,该平台具有出色的续航能力和作战可用性,”GA-ASI 首席执行官 Linden Blue 表示。“我们的 MQ-9A 帮助印度海军覆盖了超过 1400 万平方英里的作战区域。” MQ-9A 由 GA-ASI 根据公司自有、公司运营 (COCO) 租赁协议向印度供应。
格雷戈里克鲁德准将是德克萨斯州圣安东尼奥-兰道夫联合基地第 19 航空队的指挥官。第 19 航空队由 32,000 多名兵力和 1,530 架飞机组成,分布在全美 17 个空军联队。他负责美国空军 45% 以上的年度飞行小时计划,并指导机组人员培训课程,累计培训了超过 21,000 名固定翼和旋翼机飞行员、遥控飞机飞行员、作战系统军官、空战经理、武器指挥官和毕业的职业士兵飞行员。他于 1995 年以优异的成绩毕业于阿拉巴马州麦克斯韦空军基地军官训练学校并被任命为指挥官。他是一名指挥飞行员,拥有 3,200 小时的飞行时间,其中包括 350 小时的战斗时间;担任过评估员、教练飞行员和武器官。
维护大型分布式系统必须考虑两个相互冲突的驱动因素:创新和稳定性。需要创新来适应环境变化并实现新功能。稳定性是确保整个系统始终如一的性能和不间断可靠性的必要条件。FLARM 的功能在过去十年中不断扩展,甚至超越了交通警报和防撞功能。例如,2015 年的第 6 版发布了一种新颖的跳伞者和遥控飞机解决方案、一种编码风向信息以改进碰撞警告的框架、无轨迹选项以及各种性能改进(其中一些有利于地面接收器)。几年前就添加了安全飞行记录和固定障碍物警报。此类增强功能增加了 FLARM 对每个用户的价值,但需要对整个设备进行软件更新。这允许的功能远远超出其他 ADS-B 实现(例如 1090ES)可以提供的功能。
SonoFlash 浮标在法国制造,由 TELERAD、SelhaGroup 和 Realmeca 等中小企业网络制造,依托泰雷兹在声学传感器技术方面的专业知识,为法国在战略产业方面的独立发展做出贡献。“泰雷兹将 10 年的硬件和数字技术创新融入到一个长 91.4 厘米、直径 12.3 厘米的管子中。SonoFlash 扩大了海军反潜作战范围,超越了当今市场上所有其他声纳浮标,并提供了一种多功能且易于部署的解决方案,可从任何有人驾驶或遥控飞机、护卫舰或无人水面舰艇跟踪潜艇。我们感谢 DGA 和海军对我们的信任,并很高兴能与法国中小企业合作伙伴共同完成这个项目,恢复法国在声纳浮标方面的主权能力。 ” 泰雷兹公司水下系统副总裁 Alexis Morel。
1. 能源部航空计划概述:政府飞机用于支持四大核心计划:能源安全、核安全、科学发现与创新和环境责任 [能源部 2006 年战略计划]。支持这些计划的飞机运营类型包括:货物、危险材料和人员运输;空中巡逻,如管道、电力线和安全;航空摄影;研究与开发;航空勘测,如大气、生物、环境和放射性评估;航空应用;用于施工、勘测或退役活动的旋翼机外部负载操作。此外,能源部拥有、运营或使用无人驾驶飞机 (UA) 系统 (UAS)。UA 是飞机 [Title 14 CFR Part 1],以前被称为无人驾驶飞行器 (UAV) 或遥控飞机 (ROA)。UAS 用于大气研究、传感器开发或用于验证操作概念的研究和开发,以支持核安全和科学计划。此外,能源部还使用不同数量的商业航空服务(租赁、合同、租用和包机)飞机。航空作业范围从使用单架飞机到涉及多架飞机的复杂任务。
想象一下,大型国际机场(如利雅得、开罗或法兰克福机场)遭到无人机的暴力袭击。这种袭击会是什么样子?也许是一架电池供电的遥控飞机,机头装有活塞装置,当它撞上地面目标(如滑行的商用飞机)时,会引爆数磅炸药。或者可能是一架多旋翼无人机,由硬化塑料制成,专为消费市场制造,但经过改装,可以携带炸弹投掷到等待班车的人群中。这两种无人机系统 (UAS) 都很难用肉眼观察或用雷达探测到,更不用说在击中目标之前将其击败了。这种袭击的后果会是怎样的?想象一下破坏、伤害和死亡的后果。考虑对交通网络的影响。推理政治影响和袭击后对政府的影响,以及在不可避免地剖析导致目标机场脆弱的情报、安全和运营失误之后。最终的核算结果可能会对相关人员产生难以估量的负面影响。
未来国际冲突的特点代表着一系列复杂且不可预测的挑战,这要求美国在作战方式上做出重大转变。《维持美国全球领导地位:21 世纪国防优先事项》中的战略指导强调:“……美国将继续采取积极措施应对……威胁,监测全球非国家威胁的活动,与盟友和合作伙伴合作,控制无政府领土,并在必要时直接打击最危险的团体和个人。”美国空军 (USAF) 遥控飞机 (RPA) 载体——愿景和赋能概念:2013-2038 平衡了美国空军无人机系统飞行计划 2009-2047 中设想的影响与资源受限的现实以及针对复杂世界的雄心勃勃的国家战略。更重要的是,作为一份富有远见的文件,RPA Vector 超越了当前严峻的财政现实,探索了 2013-2038 年期间可能采用的技术。其目的是研究空军未来 RPA 部队所需的技术进步。
美国马里兰州劳雷尔国会技术大学人为因素系 摘要 卫星操作是远程操作的一个子集,与遥控飞机 (RPA) 和无人驾驶飞行器 (UAV) 操作有相似之处。由于文献中缺乏普遍性,需要增加对与卫星操作相关的无聊、自满、习惯和警惕性的研究。昼夜节律、机组资源管理和轮班工作动态可能会加剧卫星操作中自满驱动的自动化偏见和社会懈怠错误。本理论和应用概述旨在特别关注人为因素研究中的卫星操作文献,以确定需要扩展知识的领域。人在回路中的共性使人为因素经验教训能够从不相关的部门传递到卫星操作,从而潜在地减轻灾难性的人为错误。因此,本文献综述详细说明了加强卫星操作人为因素研究的必要性。关键词 自满、人在回路、遥控飞机、卫星操作、轮班工作 1.简介 美国国防部 (DoD) 每周 7 天、每天 24 小时以人在回路 (HITL) 对太空资产进行指挥和控制 (C2),多个团队以轮班工作模式运作,超出了正常的白班时间。由于复杂性和进入轨道后缺乏维护能力,采购计划办公室通常将最初的开发和资金重点放在卫星系统空间段(也称为航天器)上。航天器系统设计的复杂性导致了只需要偶尔人工干预的自主机器的发展,从而减少了操作员的总体压力 [1]。操作员必须保持警惕,以阻止近乎同等对手的风险和可能降低或永久终止任务能力的在轨异常。航天器和地面架构自主性可能会增加操作员自满的风险,而由于无窗安全操作中心的轮班模式导致的昼夜节律缺陷可能会进一步加剧这种风险 [2, 3]。本研究旨在确定与卫星和远程操作相关的人为因素的当前文献状态。本文详细介绍了自满、机组资源管理 (CRM) 和远程操作环境中的人类动态的背景、意义、当前应用和理论。这篇对当前应用和理论的回顾探讨了文献如何未能将航空经验教训与无人驾驶航天器操作完全融合,以对抗戈登·杜邦的人为因素“肮脏十二人”[4]。