(U//FOUO) 本文件的所有章节均包含有关遥测收集、系统规划、作战目标确定和收集协调的信息。其中还讨论了现场处理、国家级处理、信息分析和情报结果。重点是遥测情报(TELINT),现在称为外国仪器信号情报(FISINT)的收集,并有限度地提及其他相关“INT”中的活动,以便将 TELINT 信息放在适当的上下文中。每章(通常为十年)讨论重大事件,并附有该时间段内使用的每个收集站点/资产的照片,并包括选定的地理描述。本文件确实包括选定的以前受限制访问的 CIA 项目,这些项目已获得 CIA 的许可,以及来自 NRO 的一些材料。作者感谢这两个组织的历史部门的努力,特别是 CIA 的 Michael Warner 先生和 NRO 的 Cargill Hall 先生。已努力包括大多数服务密码局和选定的外国合作伙伴的参与(如适用)。
限制的检测引擎可能会发现点异常,各种专家系统涵盖了其他事件[2]。由于生成新的地面真相集非常昂贵,因此无监督的算法已成为主流。在TeleManom [1]中,使用长期短期记忆(LSTM)网提取预期的遥测值。然后,使用的差异和实际值之间的差异无监督阈值来检测事件。作为单独的LSTMS处理不同的遥测通道,TeleManom提供了可追溯性和可解释性,这对于空间应用至关重要。用于检测遥测异常的数据驱动算法通常被大量参数化,并且不正确的超级参数会恶化其性能。我们以[1]为基础,并提出了一种遗传算法(GA),以进化其未受监督阈值部分的超参数(Sect。2)。实验表明GA提高了TeleManom的能力(3)。我们表明,应重新审视检测器的质量,因为捕获检测异常的时间方面的指标(相对于地面真理)传达了非常重要的信息。
- 奥地利航天局(ASA)/奥地利。- 比利时科学政策办公室(BELSPO)/比利时。- 机器建筑中央研究所(TSNIIMASH)/俄罗斯联合会。- 北京跟踪与电信技术研究所(CLTC/BITTT)/中国/中国卫星卫星发射和跟踪控制将军/中国。- 中国科学院(CAS)/中国。- 中国太空技术学院(CAST)/中国。- 英联邦科学与工业研究组织(CSIRO)/澳大利亚。- 丹麦国家航天中心(DNSC)/丹麦。- deciênciae tecnologia Aerospacial(DCTA)/巴西。- 电子和电信研究所(ETRI)/韩国。- 欧洲剥削气象卫星(Eumetsat)/欧洲的组织。- 欧洲电信卫星组织(Eutelsat)/欧洲。- 地理信息和太空技术发展局(GISTDA)/泰国。- 希腊国家太空委员会(HNSC)/希腊。- 希腊航天局(HSA)/希腊。- 印度太空研究组织(ISRO)/印度。- 太空研究所(IKI)/俄罗斯联合会。- 韩国航空航天研究所(KARI)/韩国。- 通信部(MOC)/以色列。- 穆罕默德垃圾箱拉希德航天中心(MBRSC)/阿拉伯联合酋长国。- 国家信息与通信技术研究所(NICT)/日本。- 国家海洋与大气管理局(NOAA)/美国。- 哈萨克斯坦共和国国家航天局(NSARK)/哈萨克斯坦。- 国家太空组织(NSPO)/中国台北。- 海军太空技术中心(NCST)/美国。- 荷兰太空办公室(NSO)/荷兰。- 粒子与核物理研究所(KFKI)/匈牙利。- 土耳其科学技术研究委员会(Tubitak)/土耳其。- 南非国家航天局(SANSA)/南非共和国。- 太空和高中气氛研究委员会(Suparco)/巴基斯坦。- 瑞典太空公司(SSC)/瑞典。- 瑞士太空办公室(SSO)/瑞士。- 美国地质调查局(USGS)/美国。
由于太空物体数量不断增加,碎片撞击运行中的航天器变得越来越常见。样本返回任务表明发生了数百次小撞击,但通常只有在撞击导致航天器性能异常时才会进行严格分析。开发识别和评估不会立即导致异常行为的小撞击的技术有助于验证碎片群模型、进行风险评估并帮助确定未来异常的归因。本研究将碎片撞击引入航天器动力学模拟并评估其对航天器遥测的影响。各种信号处理和变化检测技术用于识别嘈杂遥测中的撞击并估计撞击参数。开发了匹配滤波器小波来识别对状态遥测的影响,其中误差由航天器姿态控制系统自主校正。一组匹配滤波器用于根据对航天器响应特性的先验知识来估计撞击的参数。使用顺序概率比测试来突出显示航天器角动量的突然变化。进行蒙特卡罗分析以表征这些算法的性能。在正确识别碎片撞击和准确估计撞击参数方面,比较了各种技术的结果。开发对小型碎片撞击进行分类和表征的能力使任何航天器都可以用作现场碎片传感器。
2018 年 1 月 18 日,国防部/OSR 批准根据 18-S-0579 公开发布。本文档中包含的数据(包括规格)为摘要性质,L3 Cincinnati Electronics Corporation(商名为 L3Harris Technologies)可随时更改,恕不另行通知。请致电了解最新修订版本。所有提及的品牌和产品名称均为其各自所有者的商标、注册商标或商品名。实际设备性能将取决于客户应用。
– 奥地利航天局 (ASA)/奥地利。 – 比利时联邦科学政策办公室 (BFSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间和高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
2010年国家自然科学基金面上项目。黑河计划的科学目标是揭示不同尺度(如叶片、单株植物、群落、景观和流域尺度)内陆河流域生态水文系统的过程和机制,提高水文、生态和经济系统演变的研究能力和可预测性,研究生态水文过程对气候变化和人类活动的响应,为内陆河流域水安全、生态安全和可持续发展提供基础理论和技术支持。黑河计划的实施最终将建立一个集物理和社会经济过程观测、数据管理和模型模拟于一体的研究平台,促进21世纪中国流域科学的发展。
我们的导弹和空间技术的快速发展在无线电遥测领域创造了许多具有挑战性的新目标。导弹和卫星都变得越来越大,越来越复杂;这意味着用于从这些飞行器恢复飞行信息的遥测系统必须能够处理越来越多的测试数据和科学信息。用于此目的的遥测发射和接收系统发挥着重要作用。一次导弹发射或卫星发射可能耗资数百万美元,而这笔开支的主要目的是获取科学信息。这些信息可能与飞行器本身的性能有关,也可能与它所经过的环境有关。无论信息的用途是什么,大部分信息都必须通过无线电遥测从飞行器传输到地面接收站,因为飞行器本身很少被恢复。因此,耗资数百万美元的发射的唯一实际结果往往是收集遥测信号的磁带记录。本文的目的是简要介绍当今使用的四种主要遥测系统,并讨论遥测领域的一些新趋势。