摘要 - 智能机器人技术在维护,维修和大修(MRO)机库操作方面具有重要意义,其中移动机器人可以在其中导航复杂而动态的环境,以进行飞机视觉检查。飞机机库通常忙碌而变化,形状和尺寸各不相同,呈现出严格的障碍物和条件,可能导致潜在的碰撞和安全危害。这使得障碍物检测和避免对安全有效的机器人导航任务至关重要。常规方法已在计算问题上应用,而基于学习的方法的检测准确性受到限制。本文提出了一个基于视觉的导航模型,该模型将预训练的Yolov5对象检测模型集成到机器人操作系统(ROS)导航堆栈中,以优化复杂环境中的障碍物检测和避免。该实验在ROS-Gazebo模拟和Turtlebot3 Waffle-Pi机器人平台中进行了验证和评估。结果表明,机器人可以越来越多地检测并避免障碍物,而无需碰撞,同时通过不同的检查点导航到目标位置。关键字 - 自主导航,对象检测,避免障碍物,移动机器人,深度学习
[1]可根据旋转不变性的最小值RNA结构基序的可扩展且可解释的识别,撰写的,Zhou,Malik,Tang,Mathews和Huang。重新梳理202 5。预印本:https://arxiv.org/abs/2402.17206。[2]通过竞争对手结构的产生和结构分解,Zhou,Tang,Mathews和Huang通过竞争结构的产生和结构分解识别。RECOMB 2024,LNCS 14758的RECOMB会议记录,Springer。https://arxiv.org/abs/2311.08339 [3] RNA设计通过structure-ware Multi-Frontier合奏优化,作者:Zhou,Dai,Li,Li,Ward,Mathews和Huang。ISMB 2023的会议记录;生物信息学,39(supp。 1)。 https://doi.org/10.1093/bioinformatics/btad252ISMB 2023的会议记录;生物信息学,39(supp。1)。https://doi.org/10.1093/bioinformatics/btad252
德勤为许多全球最受赞赏的品牌提供业界领先的审计、咨询、税务和顾问服务,其中包括近 90% 的《财富》500 强企业和 8,500 多家美国私营公司。在德勤,我们努力实现我们的目标,即通过在更公平的社会中建立信任和信心来发挥重大影响。我们利用我们独特的商业敏锐度、技术掌握和战略技术联盟为各行各业的客户打造未来提供建议。德勤很自豪能够成为全球最大的专业服务网络的一部分,在对他们最重要的市场上为客户提供服务。我们的成员所网络拥有超过 175 年的服务历史,遍布 150 多个国家和地区。了解德勤全球约 460,000 名员工如何相互影响,请访问 www.deloitte.com。
图1:实验设置。一个带有多电极阵列的储罐,用于记录电信号,然后通过我们的自定义电控界面(EFI)进行放大并随后处理。坦克用月光下列的坦克照亮,以模拟夜间状况,并使用高架摄像头跟踪游泳行为。b代表性热图显示了活鱼对的运动模式。颜色梯度从深蓝色到黄色,指示较高的访问频率或延长的停留时间,偏爱储罐墙附近的位置。在分布中的圆形间隙概述了储罐弯曲的角和多电极阵列的位置,由八个测量电极组成,它们成对在水箱的相对侧面成对。c记录的EOD波形的出现取决于鱼对电极的相对位置。p =正,n =负。d的示例性电相互作用的时间表,垂直条代表了两条鱼的颜色编码的EOD。隔离间隔(IDI)表示同一个人连续信号之间的时间。可能会重叠。回声反应的特征是固定潜伏期(M. Rume中的15-22毫秒),一条鱼对另一种鱼的EOD做出反应。两种鱼的相互回声都会产生时间锁定的信号传导序列,称为EOD同步。
摘要 - 强化学习(RL)已成为复杂环境中自动决策的有效范式。但是,在RL中,事件驱动的决策过程的集成仍然是一个挑战。本文介绍了一种新颖的体系结构,将离散事件监督(DES)模型与标准RL框架相结合,以创建混合决策系统。我们的模型利用了DES的能力来管理基于事件的动态,而RL代理对连续状态和行动的适应性,从而促进了以连续和离散事件为特征的系统中更强大,更灵活的控制策略。DES模型与RL代理一起运行,通过基于事件的见解来增强策略的性能,而环境的状态过渡则由机械模型约束。我们通过模拟证明了方法的功效,这些模拟显示出比传统RL实现的性能指标的改进。我们的结果表明,这种综合方法对从工业自动化到智能交通系统的应用有望在离散事件处理至关重要的情况下。索引术语 - 预言学习,离散事件超级访问控制,混合系统,自主决策,事件驱动的动态
1日本京都2临床心理学,大阪大学,日本苏亚大学3号临床心理学,日本,日本健康与医学研究小组,智力坦克研究小组,日本智能研究小组,KDDI Research,Inc.,Kddi Research,Inc.,Kddi Research,Inc。
摘要非convex优化的主要挑战是找到一个全局最佳的挑战,或者至少要避免“不良”本地最小值和毫无意义的固定点。我们在这里研究算法与优化模型和正则化相反的程度可以调整以实现这一目标。我们认为的模型是许多局部最小值的非概念,不一致的可行性问题,在这些点上,这些点之间的差距在这些点的附近最小。我们比较的算法都是基于投影的算法,特别是环状投影,环状放松的Douglas-Rachford算法以及放松的Douglas-Rachford在产品空间上分开的。这些算法的局部收敛和固定点已经在详尽的理论研究中表征。我们在轨道分辨光子发射光谱(ARPES)测量的轨道层析成像的背景下演示了这些算法的理论,这些理论都是合成生成和实验性的。我们的结果表明,虽然循环投影和循环恢复了Douglas-Rachford算法通常会汇聚最快,但重新使用Douglas-Rachford在产品空间上划分的方法确实从其他两个算法的不良本地算法中移开,最终从其他两个算法中掌握了当地最小值的群库,与全球范围的群体相关点,以确定了与全球范围相对应的群体的关键点。
摘要:人类活动对生物多样性的负面影响是无可争议的,但辩论对它们对物种丰富的影响(生态和保护的关键指数)仍然生动。一些研究表明,物种丰富度随着人的压力而下降,而其他研究则表明,它可能对某些人的压力不敏感,甚至对某些人的压力做出积极反应,因为某些物种(“失败者”)被其他物种所取代(“赢家”)。但是,许多“获胜者”受到中等压力的青睐,但当压力变得太高时会下降,因此,我们可以期望物种丰富性会降至某种人类压力以上。Analysing eBird data in tropical forests, I find that, under a certain threshold, increasing human footprint causes important composition changes with “losers” (habitat specialist, endemic, sensitive and threatened species) being replaced by “winners” (habitat non-specialist, large-range, human-tolerant, anthropophilic and non-native species), resulting in a slight increase in species richness.高于此阈值,“获胜者”的丰富度(除拟人化和非本地物种除外),从而导致整体物种丰富度急剧下降。i发现,物种对人足迹的物种丰富度反应在区域之间有所不同(比较北美繁殖鸟类调查的结果,预测数据库和八个生物多样性热点的ebird数据),并识别物种丰富的轨迹对人类压力的反应中的五个不同的轨迹。我建议可以根据“更换然后删除框架”中的斜率和单调对它们进行分类,从而统一人类压力对物种丰富度的矛盾影响。
文章历史:在过去的十年中,已经开发了各种基于速度障碍的方法,以避免动态环境中的碰撞。但是,这些方法通常仅限于处理几个障碍,连续的相遇或缺乏安全地形的安全保证。本文提出了使用速度障碍法的自适应碰撞避免策略,旨在使自主火星流浪者能够安全地驾驶动态和不确定的地形,同时避免多个障碍。该策略构建了自适应速度锥体,考虑了动态障碍和地形特征,从而确保了连续的安全性,同时将漫游者引导到其航路点。我们在模拟的MARS探索方案中实施了策略,代表了具有挑战性的多OSTACLAS任务。模拟结果表明,我们的方法通过增加安全距离来增强性能,使其非常适合自主行星探索,在这种情况下,避免碰撞对于任务成功至关重要。