航空航天界最近对可消耗/消耗性技术的关注凸显了对新的、简化的设计工具的需求,以及对当前设计要求的潜在重新评估。增材制造 (AM) 技术提供了设计灵活性和创新潜力;然而,对于 AM 材料,内部空隙和表面特征会导致组件故障,并在应力寿命 (S-N) 数据中产生显著的分散。AM 分散减少通常通过工艺优化来实现;然而,这种方法需要特定的 AM 工艺知识和大量的材料数据。缺陷知情设计方法可确定特定的检查要求,最大限度地减少表征材料性能的数据量,并减少大量工艺开发以最大限度地减少缺陷的需要,因为缺陷的影响已明确包含在设计中。因此,缺陷知情设计可有效降低 AM 工艺开发的成本。当前的工作利用小裂纹扩展模型和实验缺陷观察来开发缺陷信息 S-N 等效模型,该模型可以根据起始缺陷应力强度因子 (K) 准确预测组件寿命。这种 K-N 方法减少了在 S-N 数据中观察到的散度,并最大限度地减少了模型所需的训练数据。这项研究的结果是用于 AM 应用的多功能设计工具,以及对不确定性量化的材料测试要求的定量理解。在这里发现的见解揭示了改进可消耗/消耗品领域设计的机会,并促进了 AM 供应链中的成本节约,从而使各行各业受益。
过去几十年来,世界各地对民用和军用飞机及直升机的航空发动机和结构部件的故障分析进行了持续全面的研究。虽然取得了很大进展,但随着新设计、材料和服务以及运营需求的引入,经常会遇到无法预见的问题。资源紧缩、预算限制、高维护和更换成本以及环境限制对管理航空工业提出了新的控制和方法。本文的目的是回顾过去几十年在分析和控制飞机老化和故障问题方面取得的进展。工作包括:1)。从物理学角度分析飞机和直升机的损伤和故障模式和机制;2)。聚合物基复合材料和陶瓷故障的建模和分析解决方案。该主题的研究领域非常广泛,可能从金属合金延伸到新材料(聚合物/陶瓷复合材料、铝化物),从传统到先进的结构设计,加工技术的进步等等。本文重点介绍了基于结构完整性概念的历史故障和经验教训、故障模式和机制、各种飞机部件的故障、结构复合材料的故障机制以及案例研究。
摘要:背景:增材制造 (AM) 在备件生产中的应用日益增多。AM 作为一种 3D 计算机辅助制造 (CAM) 方法,正在连接数字世界和物理世界。AM 的使用使航空备件行业的供应链变得更简单、更有效、更高效。方法:本文通过系统的文献综述,展示了 AM 对飞机备件行业供应链的影响。因此,对 AM 供应链的集中式和分散式结构进行了评估。此外,人们的注意力转向了采用 AM 技术和工业 4.0 的供应链,这些供应链可以支持航空航天工业的维护任务和备件生产。结果:这篇评论文章总结了行业对备件的研究结果之间的相互联系。它评估了 AM 在概念化整个供应链方面的潜力和能力。此外,MRO 可以采用所提出的框架技术来协助决策者决定具有 AM 设施的物流中心是集中式还是分散式。结论:最后,本综述提供了一个总体视角,以在工业 4.0 的新技术和颠覆性技术推动下对备件供应链设计做出关键决策。下一代供应链可以通过实施 AM 技术来减少浪费、提高能力和可持续性,从而取代物流障碍。
除了结构紧凑、维护成本低之外,燃气轮机还可以使用多种燃料源,这使其成为高效生产能源的自然选择。 因此,在过去 40 年里,燃气轮机在电力行业(包括公用事业、工业工厂以及航空业)中的应用越来越广泛。 [6] 在联合循环运行中,当入口温度超过 1400°C 时,效率可高达 63%。 [2] 因此,人们采用了不同的策略来保护当前使用的镍基高温合金,例如沉积氧化钇稳定化氧化锆热障涂层 (TBC) 和强化薄膜冷却。然而,当考虑长时间使用(t>10000h)时,这一标准并不现实,因为TBC在900°C以上时会快速蠕变,再加上其热膨胀系数(CTE)与合金的热膨胀系数相差很大,会增加剥落的风险,并限制金属基部件在涡轮发动机中的使用。[7–10] 尤其是设想未来的燃气轮机将使用氢或氨等无碳燃料源,水蒸气是燃烧的主要产物之一,会加剧这些合金的降解。[5,11–13] 因此,为了减少温室气体排放和提高燃气轮机效率,需要用更坚固、耐氧化和腐蚀的材料来替代它们,这些材料可以在更高的温度下使用。由于密度低、热膨胀系数低(3-5.5×10−6K−1)、抗高温蠕变性和熔点高,Si3N4、SiC、SiC/SiC复合材料等非氧化物硅基陶瓷在燃烧环境中的应用非常突出[14–21]。
通过使用键盘,您可以在计算机上打字,并且通过使用一些快捷键,您可以执行特定任务,例如打开我的计算机、文档相关任务、输入代码、打开程序、打开开始菜单等。许多此类任务都是在计算机键盘的帮助下完成的。
材料和部件老化对于核电站和其他核设施的安全、可靠和经济运行至关重要。老化会影响检查频率、部件维修或更换频率,并最终影响核设施的使用寿命。太平洋西北国家实验室 (PNNL) 的科学家和工程师了解老化的重要性,并运用我们的专业知识开发更坚固的材料,了解材料降解的条件,在缺陷导致故障之前检测出缺陷,并开发修复或减轻老化相关损坏的技术。在 PNNL 进行的研究和开发支持了美国目前运行的轻水反应堆 (LWR) 机组的持续运行,并可以支持部署未来更安全、更经济的核系统。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性程序 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择了机翼根部,因为它最有可能出现疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果通过数值结果进行了验证。结论是,根据疲劳寿命循环,机翼根部结构状态不会受到严重损伤,无论是通孔还是贯穿侧裂纹,其失效时间都约为30至100年。因此,其结构寿命可以延长。研究成果将对延长飞机机翼的结构寿命产生重要影响。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性计划 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择翼根是因为它最有可能疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果与数值结果进行了验证。结论是,基于疲劳寿命循环,机翼根部结构状况不会受到严重损坏的影响,无论是通孔还是贯穿侧裂纹,其失效时间约为 30 至 100 年。因此,其结构寿命可以延长。研究成果将致力于延长飞机机翼的结构寿命。
1. Glenske K、Donkiewicz P、Köwitsch A 等人。金属在骨再生中的应用。Int J Mol Sci。2018;19(3):1-32。2. Smeets R、Precht C、Hahn M 等人。含银聚硅氧烷涂层钛种植体的生物相容性和骨整合:猪体内模型。Int J Oral Maxillofac Implants。2017;32(6):1338-1345。3. Witte F。可生物降解镁种植体的历史:综述。Acta Biomater。2010;6(5):1680-1692。4. Triantafyllidis GK、Kazantzis AV、Karageorgiou KT。不锈钢 316L 骨科板植入物因交替出现疲劳和解理退相干而过早断裂。工程失效分析。2007;14(7):1346-1350。5. Amel-Farzad H、Peivandi MT、Yusof-Sani SMR。不锈钢骨科植入物体内腐蚀疲劳失效及多种不同损伤机制。工程失效分析。2007;14(7):1205-1217。6. Singh Raman RK、Jafari S、Harandi SE。镁合金在生物植入物应用中的腐蚀疲劳断裂:综述。工程断裂力学。2015;137:97-108。7. Maksimkin AV、Senatov FS、Anisimova N 等人。用于骨缺损置换的多层多孔超高分子量聚乙烯支架。Mater Sci Eng C。2017;73:366-372。8. Senatov FS、Kopylov AN、Anisimova N、Kiselevsky MV、Maksimkin AV。基于超高分子量聚乙烯的纳米复合材料作为受损软骨的替代材料。Mater Sci Eng C。2015;48:566-571。9. Senatov FS、Gorshenkov MV、Tcherdyntsev VV 等人。基于超高分子量聚乙烯的生物相容性聚合物复合材料用于软骨缺损置换的可能性。J Alloys Compd。2014;586:544-547。10. Kurtz S 编辑。超高分子量聚乙烯生物材料手册 – 全关节置换和医疗器械中的超高分子量聚乙烯。第三版。阿姆斯特丹:Elsevier Inc.;2016。11. Brach Del Prever EM、Bistolfi A、Bracco P、Costa l。UHMWPE 用于关节置换术 - 过去还是未来?J Orthop Traumatol。2009;10(1): 1-8。12. Senatov FS、Niaza KV、Salimon AI、Maksimkin AV、Kaloshkin SD。模拟骨小梁组织的结构化 UHMWPE。Mater Today Commun。2018;14:124-127。13. Braun S、Sonntag R、Schroeder S 等人。髋臼置换术的背面磨损。Acta Biomater。2019;83:467-476。14. Cowie RM、Briscoe A、Fisher J、Jennings LM。 UHMWPE-on-PEEK OPTIMA 的磨损和摩擦。J Mech Behav Biomed Mater。2019;89: 65-71。15. Abdelgaied A、Fisher J、Jennings LM。全膝关节置换术临床前磨损模拟的综合实验和计算框架。J Mech Behav Biomed Mater。2018;78:282-291。16. Zeman J、Ranusa M、Vrbka M、Gallo J、Krupka I、Hartl M。全髋关节置换术生命周期磨合期 UHMWPE 髋臼杯蠕变变形。J Mech Behav Biomed Mater。2018;87:30-39。