大型、多站点、异构脑成像数据集越来越需要用于训练、验证和测试基于深度学习 (DL) 的高级自动化工具,包括基于结构磁共振 (MR) 图像的诊断和治疗监测方法。在将多个较小的数据集组合成较大的数据集时,了解聚合数据集中不同采集和处理协议之间的潜在差异 (称为“批次效应”) 至关重要。训练数据集中存在差异很重要,因为它更接近地反映了真实的潜在数据分布,因此可以增强工具的整体通用性。然而,必须仔细评估批次效应的影响,以避免不良影响,例如可能降低性能指标。批次效应可能来自许多方面,包括采集设备、成像技术和参数以及应用的处理方法的差异。在开发工具时,必须考虑它们的影响,包括有益的和不利的,以确保它们的输出与提出的临床或研究问题(即实际的疾病相关或病理变化)相关,而不仅仅是由于聚合数据集中底层批次效应的特殊性。我们回顾了深度学习在结构性脑 MR 成像中的应用,它聚合了来自神经成像数据集的图像,这些数据集通常是在多个站点获取的。我们检查了包含健康对照参与者和患者的数据集,这些数据集是使用不同的采集协议获取的。首先,我们讨论了数据访问问题,并列举了一些常用的公开脑数据集的主要特征。然后,我们通过探索两大类方法回顾了纠正批次效应的方法:数据协调,使用数据标准化、质量控制协议或其他类似算法和程序来明确理解和最小化不必要的批次效应;领域自适应,开发深度学习工具,通过使用方法隐式处理批次效应以获得可靠和稳健的结果。在这篇叙述性评论中,我们强调了这两类 DL 方法的优缺点,并描述了未来研究中需要解决的关键挑战。
摘要 目的 人们投入了大量资源,通过提供非自然形式的体感反馈来增强假肢的控制和可用性。在本文中,我们研究了远程控制假肢的身体部位的内在体感信息是否可以被运动系统利用来支持控制和技能学习。 方法 在安慰剂对照设计中,我们使用局部麻醉来减弱大脚趾的体感输入,同时参与者学习通过压力传感器操作脚趾控制的手动佩戴的机器人额外手指。将运动学习结果与接受假麻醉的对照组进行比较,并在三种不同的任务场景中进行量化:与生物手指隔离操作、同步协调操作和协作操作。 主要结果 两组都能够学会操作机器人额外手指,大概是因为视觉反馈和其他相关的感官提示非常丰富。重要的是,远端身体控制器提供的位移体感提示有助于获得独立的机器人手指运动、保持和转移同步手部机器人协调技能以及在认知负荷下的表现。当任务涉及与生物手指的密切协作时,脚趾麻醉不会损害运动表现,这表明运动系统可以通过动态整合来自多个甚至远端身体部位的任务内在体感信号来弥补感觉反馈差距。意义总之,我们的研究结果表明,除了人工刺激之外,还有多种自然途径可以提供内在替代体感信息来支持对人造身体部位的运动控制。
Kim,B。H.,Choi,Y.H.,Yang,J.J.,Kim,S.,Nho,K.,Lee,J.M。,&Alzheimer's Disision神经影像学计划。 (2020)。 鉴定了与阿尔茨海默氏病中皮质厚度相关的新型基因:系统生物学方法的神经影像学方法。 阿尔茨海默氏病杂志,75(2),531-545。 https://doi.org/10.3233/jad-191175Kim,B。H.,Choi,Y.H.,Yang,J.J.,Kim,S.,Nho,K.,Lee,J.M。,&Alzheimer's Disision神经影像学计划。(2020)。鉴定了与阿尔茨海默氏病中皮质厚度相关的新型基因:系统生物学方法的神经影像学方法。阿尔茨海默氏病杂志,75(2),531-545。 https://doi.org/10.3233/jad-191175
摘要 脑膜瘤是最常见的颅内良性肿瘤,被认为起源于蛛网膜颗粒的蛛网膜帽细胞。我们试图根据治疗前的 MRI 开发基于人群的图谱,以探索颅内脑膜瘤的分布,并探索不同位置颅内脑膜瘤发展的风险因素。2006 年至 2015 年期间,所有被诊断为颅内脑膜瘤并转诊至神经外科的来自特定收集区域的成年人(≥ 18 岁)均有资格纳入。治疗前 T1 增强 MRI 加权脑部扫描用于半自动肿瘤分割,以开发脑膜瘤图谱。统计分析中使用的患者变量包括年龄、性别、肿瘤位置、WHO 分级和肿瘤体积。共确定了 602 名颅内脑膜瘤患者,以从广泛而明确的收集区域开发脑肿瘤图谱。脑膜瘤在脑内的空间分布并不均匀,额区肿瘤较多,尤其是旁矢状面、大脑镰前部、额叶底和中颅窝。超过 2/3 的脑膜瘤患者为女性(p < 0.001),她们患多发性脑膜瘤的可能性也更大(p < 0.01),而男性患幕上脑膜瘤的可能性更大(p < 0.01)。肿瘤位置与年龄或 WHO 分级无关。脑膜瘤的分布在脑内呈现从前到后的梯度变化。脑膜瘤在普通人群中的分布并不依赖于组织病理学 WHO 分级,但可能与性别有关。
现代化优先级:指示能量(DE)使SBIR颁奖颁奖典礼AF95-109:“ 1-3微米可调二极管泵送固态激光源”(F29601-96-C-0026)海军n99191:“压缩中型中型中型式激光器for Commentermeasure for Commentermeasure N02-139:“用于船舶自卫的高能固态激光(SSL)”(N00178-04-C-3045)军队主题A06-208:“纤维激光光束相结合,以高效效率和轻型HEL Systems和轻型HEL Systems”(W9113M-07-C-0228)(W9113M-07-C-0228)OSD主题OSD TOBILINAL OSD TOBILINAL OSD-D05-D04:(高)高度LASEREARE( (FA9451-07-C-0005)MDA主题MDA04-005:“提高效率纤维激光模块的光束组合”(N68936-08-C-0049)
1个技术灾难的例子包括1986年的切尔诺贝利核事故,2011年由地震和海啸引起的2011年福岛核电站灾难以及2020年贝鲁特港口的武器店的爆炸。2个受位移影响的社区(DAC)包括居住在发生内部流离失所的地区的任何人,可能包括IDP,主持人社区成员,难民,返回者,前战斗人员或其他人的生活条件受到IDP的影响。该术语鼓励一种基于社区和基于区域的流离失所的方法。
1美国辛辛那提大学医学院内科系,美国俄亥俄州辛辛那提市2运河大学,伊斯玛利亚,埃及5细菌流行病学和抗菌抵抗研究部门,美国国家家禽研究中心,USDA -ARS,USDA -ARS,乔治亚州雅典,乔治亚州6卫生和世界卫生部,兽医学院,曼苏拉大学,曼苏拉大学,曼苏拉大学,曼苏拉大学及管理,苏伊士运河大学兽医学院,埃及,埃及,埃及9号鱼类感染疾病研究部(FID RU),兽医微生物学系,朱拉隆科学学院,chulalongkorn University,Chulalongkorn University,Thailand,Thailand,Thailand(S.E),医学教育部,医学院10部美国11 SOHAG大学医学管理局,SOHAG,埃及12号12号药理学和治疗系,兽医学院,Damanhour大学兽医学院,埃及,埃及13,埃及13基金会大学医学院,基金会伊斯兰堡大学,伊斯兰堡大学,巴基斯坦,伊斯兰堡,伊斯兰堡,伊斯兰堡,14号,化学学院,14
动机:脑成像遗传学研究基因型数据(例如单核多态性(SNP)和成像定量性状(QTS))之间的复杂关联。神经退行性疾病通常表现出多样性和异质性,起源于该疾病,不同的诊断组可能会带有不同的成像QT,SNP及其相互作用。稀疏的规范相关分析(SCCA)被广泛用于识别双变量基因型 - 表型关联。然而,大多数现有的SCCA方法是无监督的,导致无法识别特定于诊断的基因型 - 表型关联。结果:在本文中,我们提出了一种名为MT – SCCALR的新联合多任务学习方法,该方法吸收了SCCA和逻辑回归的优点。MT – SCCALR共同学习多个任务的基因型 - 表型关联,每个任务都集中在识别一种诊断特定的基因型 - 表型模式上。同时,MT – SCCALR不仅可以为每个诊断组选择相关的SNP和成像QT,而且还允许将多个诊断组共享的SNP选择。我们得出了一种有效的优化算法,该算法可以保证其转化为局部最佳限度。与两种最先进的方法相比,MT – SCCALR产生更好或类似的规范相关系数和分类性能。此外,它拥有比竞争对手更好的判别规范权重模式。可用性和实施:该软件可在https://github.com/dulei323/mtsccalr上公开获得。这证明了MTSCCAR在识别诊断性异构基因型 - 表型模式方面的功能和能力,这将有助于了解脑疾病的病理生理学。联系人:dulei@nwpu.edu.cn或li.shen@pennmedicine.upenn.edu补充信息:补充数据可在Bioineformatics在线获得。
摘要 目的。碳纤维电极可以实现更好的长期脑植入,最大限度地减少硅基电极常见的组织反应。小直径的纤维可以实现高通道数的脑机接口,能够重现灵巧的动作。过去的碳纤维电极既表现出高保真度的单个单元记录,又表现出紧邻记录点的健康神经元群。然而,由于以前未知的原因,长期植入大脑的碳纤维阵列的记录产量通常徘徊在 30% 左右。在本文中,我们研究了旨在提高记录产量和寿命的制造工艺改进。方法。我们测试了一种使用 532nm 激光与传统剪刀方法相比的新切割方法,以创建电极记录点。我们通过阻抗测量和体内阵列记录产量验证了改进记录点的有效性。此外,我们还测试了可能更持久的 PEDOT:pTS 涂层替代品,包括 PtIr 和氧等离子蚀刻。通过加速浸泡测试和急性记录对新涂层进行了评估。主要结果。我们发现,激光产生了一致、可持续的 257 ± 13.8 µ m 2 电极,其 1 kHz 阻抗低(PEDOT:pTS 为 19 ± 4 k Ω),光纤间差异小。研究发现,PEDOT:pTS 涂层的激光切割光纤在急性(97% > 100 µ V pp,N = 34 根光纤)和慢性(84% > 100 µ V pp,第 7 天;71% > 100 µ V pp,第 63 天,N = 45 根光纤)设置下均具有高记录产量。激光切割记录部位是 PtIr 涂层和氧等离子蚀刻的良好平台,在加速浸泡测试中与 PEDOT:pTS 相比,它减缓了 1 kHz 阻抗的增加。意义。我们发现激光切割的碳纤维具有高记录产量,可以在体内维持两个多月,并且替代涂层在加速老化测试中的表现优于 PEDOT:pTS。这项工作提供了证据,支持碳纤维阵列作为高密度、临床可行的脑机接口的可行方法。
1. 佛蒙特大学医学院精神病学系,佛蒙特州伯灵顿 2. 阿姆斯特丹大学心理学系,荷兰阿姆斯特丹 3. 罗彻斯特大学医学与牙科学院神经科学系和 Ernest J. Del Monte 神经科学研究所,美国纽约州罗彻斯特 4. 墨尔本大学墨尔本心理科学学院,澳大利亚墨尔本 5. 科罗拉多大学博尔德分校心理学和神经科学系,美国博尔德 6. 华盛顿大学医学院精神病学系,美国密苏里州圣路易斯 7. 加州大学洛杉矶分校大卫·格芬医学院,美国洛杉矶 8. 莫纳什大学认知与临床神经科学研究所和心理科学学院,澳大利亚墨尔本 9. 澳大利亚天主教大学健康科学学院心理学学院,澳大利亚墨尔本 10. 利物浦大学心理科学系,英国利物浦 11. 行为荷兰奈梅亨拉德堡德大学科学研究所 12. 美国马里兰州贝塞斯达国家酒精滥用和酒精中毒研究所内部临床和生物研究部临床神经影像研究核心 13. 美国拉霍亚加州大学圣地亚哥分校退伍军人医疗系统和精神病学系 14. 美国俄克拉荷马州塔尔萨劳瑞德脑研究所 15. 澳大利亚帕克维尔国家青少年心理健康卓越中心 Orygen 16. 澳大利亚墨尔本大学青少年心理健康中心 17. 美国康涅狄格州纽黑文耶鲁大学医学院精神病学系 18. 德国莱比锡马克斯普朗克人类认知和脑科学研究所神经病学系 19. 荷兰莱顿大学心理学研究所、认知心理学部和莱顿脑与认知研究所 20. SA MRC 精神障碍风险与复原力研究组,开普敦大学精神病学和神经科学研究所,开普敦,南非 21. 美国马里兰州巴尔的摩市国家药物滥用研究所内部研究计划神经影像学研究分部 22. 荷兰阿姆斯特丹大学阿姆斯特丹医学中心精神病学系 23. 荷兰阿姆斯特丹自由大学医学中心精神病学系 24. 澳大利亚墨尔本大学和墨尔本健康中心精神病学系墨尔本神经精神病学中心 25. 美国加利福尼亚州马里兰州马里兰州雷伊南加州大学凯克医学院史蒂文斯神经影像学与信息学研究所成像遗传学中心 26. 加拿大魁北克省蒙特利尔市 CHU Ste Justine 医院蒙特利尔大学精神病学系 通讯作者:Sage Hahn UVM 医学中心,1 South Prospect Street Burlington Vermont 05401 sahahn@uvm.edu 简称:仅根据大脑结构预测 AUD 关键词:结构 MRI、机器学习、酒精依赖、AUD、遗传算法、成瘾 摘要字数:250 正文字数:4000 图表数量:5 表格数量:2 补充信息:4 页数