郭锦彪先生对新加坡的科技进步产生了重大影响,特别是在为新加坡武装部队开发先进国防技术和系统以及在关键领域推进新加坡 RIE 生态系统方面做出了巨大贡献,这些领域包括空间技术、量子工程、人工智能和高性能计算。在整个职业生涯中,郭先生一直秉持着自己的信念和承诺,即利用科学技术满足国家需求,为新加坡的持续成功做出贡献。在国防部任职的 40 年期间,郭先生推动了国防研发的总体规划、战略能力的发展、加强与国际国防组织的伙伴关系以及促进 STEM 的发展,为国防科学家和工程师搭建了人才梯队。在担任国防科技研究院国家实验室首席执行官的 12 年任期内,他带领该组织经历了一段重大增长和转型时期。他的领导作用有助于将国防科技研究院推向各种新兴技术的前沿。他加强了操作技术思维,加深了工程师和科学家对新加坡武装部队作战需求的理解,并创造了一个创新解决方案蓬勃发展的环境,以满足这些需求。作为首席执行官,他还建立了严格的质量和管理体系,以确保及时交付符合严格绩效目标的作战能力。作为首席国防科学家,郭先生对新加坡武装部队改变游戏规则的概念和颠覆性技术的开发产生了重大影响。他强烈倡导伙伴关系,并建立了国防部和当地 RIE 生态系统之间的合作计划,加强了两个社区之间的协同作用。
摘要:本研究旨在分析药物抑制 DNA 损伤反应 (DDR) 靶点 (DNA-PK 和 ATR) 对不同分子/组织学亚型膀胱癌细胞系放射增敏的影响。将 DNA-PK (AZD7648) 和 ATR (Ceralasertib) 抑制剂应用于 SCaBER、J82 和 VMCUB-1 膀胱癌细胞系,我们发现了电离辐射 (IR) 的致敏作用,即随着 IR 剂量的增加,每种药物的 IC 50 都会转移到较低的药物浓度。与此一致,药物暴露会延缓 IR 诱导的 DNA 损伤后的 DNA 修复,这可通过中性彗星试验观察到。Western blot 分析证实了所分析的膀胱癌细胞系中靶向 DDR 通路的特异性抑制,即药物阻断了 Ser2056 位点的 DNA-PK 磷酸化和 Ser317 位点的 ATR 下游介质 CHK1。有趣的是,克隆形成存活试验表明,DDR 抑制与 IR 联合具有细胞系依赖性协同作用。根据 Chou-Talalay 方法计算有和没有 IR 的联合指数 (CI) 值,证实了药物和 IR 剂量特异性协同 CI 值。因此,我们提供了功能性证据,表明 DNA-PK 和 ATR 抑制剂专门针对相应的 DDR 通路,在纳摩尔浓度下延缓 DNA 修复过程。这反过来又会导致强烈的放射增敏作用并损害膀胱癌细胞的存活率。
背景和目标:先前的研究表明,早期引入花生以防止花生过敏的效率。目前尚不清楚哪种诊断途径是在早期引入后父母对花生的反应后最佳的。方法:花生同类研究包括被转诊为早期引入花生的高风险婴儿。一个亚组的186名婴儿在家中对花生的反应,并在8个月的中位年龄在家里进行了花生皮肤刺测试和监督的开放式食物挑战(OFC)。在负OFC后,在家中引入了花生。结果:在186名婴儿中有69%检测到对花生的敏化,其中80%的皮肤刺测试> 4 mm。AN在163名sampson严重程度得分I-III级反应的婴儿中,累积剂量为4.4 g花生蛋白; 120个挑战是负面的。花生随后在家庭中以负面的挑战结果引入。6个月后,有96%的人仍在吃花生和81%的花生蛋白的单一部分。在家重新引入花生后,一名患者被认为是花生过敏。
原理:激活强大的免疫系统是抵抗实体瘤和防止复发的关键策略。研究表明,铜凋亡和由此产生的活性氧 (ROS) 增加可触发免疫原性细胞死亡 (ICD) 并调节肿瘤免疫微环境,从而激活全身免疫。因此,为此目的,设计一种多功能铜基纳米材料非常重要。方法:在本研究中,我们开发了 Bi 2 O 3 − XSX -CuS pn 异质结纳米粒子 (BCuS NPs),旨在刺激全身免疫反应并有效抑制休眠和复发性肿瘤。使用透射电子显微镜、X 射线衍射和其他方法对 BCuS 纳米粒子进行了表征。此外,通过各种实验方法深入研究了 BCuS 的声动力学和化学动力学特性。我们通过体外实验,包括免疫荧光实验、蛋白质印迹法和细胞流式细胞术,确定了BCuS诱导多种细胞死亡途径的机制。此外,我们还利用小鼠原位和远端肿瘤模型和RNA测序来评估联合治疗的疗效。结果:结果表明,BCuS在酸性环境中产生类Fenton反应,并在超声治疗过程中诱导高毒性ROS的产生。体外研究进一步表明,BCuS诱导了杯凋亡和铁凋亡的发生,并与ROS结合刺激了ICD,从而有效逆转了肿瘤微环境的免疫抑制,提高了免疫治疗的敏感性。正如体外研究所证明的那样,体内实验也证实了联合治疗的增强效果。结论:BCuS声敏剂表现出声动力治疗效应,包括抑制肿瘤生长和多种细胞死亡方式的结合。这些发现为利用纳米材料进行多模式联合癌症治疗提供了一种新方法。
由于经济发展的加速,世界的总能源消耗正在迅速增加,并且已经预测,到2050年需求将达到25多个TW [1]。如今,化石燃料,例如煤炭,原油和天然气提供了超过80%的要求[2],但可以预测,他们的储备将持续到未来50 - 60年。 此外,由化石燃料燃烧产生的温室气体(例如二氧化碳)将于2100年底达到> 1300 ppm co 2等方程(2010年为460 ppm),从而导致最高5℃的全球平均温度升高[3]。 科学界致力于使用碳中性能源,包括生物质,地热,风和太阳。 后者的区别是,所有人群都可以自由,丰富和访问,以及具有从280 nm(4.43 eV)到2500 nm(0.5 eV)的广泛波长的频谱,峰值约为2.5 eV。 在无云的一天中午,地球表面平均每平方米(1 kW m -2)接收1000瓦的太阳能。 这种标准辐照度表示为空气质量1.5(AM 1.5 g)条件。 由于其季节性,白天和天气周期,太阳也是间歇性的重要缺陷。 在很长一段时间内存储太阳能的最有效方法仍在研究中,但是许多光伏(PV)技术已成功开发出来,以将太阳能转化为电力[4]。 电解器也受到使用昂贵的电极的限制[6]。如今,化石燃料,例如煤炭,原油和天然气提供了超过80%的要求[2],但可以预测,他们的储备将持续到未来50 - 60年。此外,由化石燃料燃烧产生的温室气体(例如二氧化碳)将于2100年底达到> 1300 ppm co 2等方程(2010年为460 ppm),从而导致最高5℃的全球平均温度升高[3]。科学界致力于使用碳中性能源,包括生物质,地热,风和太阳。后者的区别是,所有人群都可以自由,丰富和访问,以及具有从280 nm(4.43 eV)到2500 nm(0.5 eV)的广泛波长的频谱,峰值约为2.5 eV。在无云的一天中午,地球表面平均每平方米(1 kW m -2)接收1000瓦的太阳能。这种标准辐照度表示为空气质量1.5(AM 1.5 g)条件。由于其季节性,白天和天气周期,太阳也是间歇性的重要缺陷。在很长一段时间内存储太阳能的最有效方法仍在研究中,但是许多光伏(PV)技术已成功开发出来,以将太阳能转化为电力[4]。电解器也受到使用昂贵的电极的限制[6]。PV产生的能量可以暂时存储到Li-Batties中,但也可以用于创建高价值产品。使用我们可以使用的技术,建立高密度的能量分子键可能是最有效的方法。例如,3千克氢产生100 kWh的化学能,而450千克锂离子电池可以提供相同量的能量[5]。PV可以在电解层中将水分成O 2和H 2的偏置,但是需要多个连接来满足所需的过电球。可以通过使用光电化学细胞(PEC)来解决这些局限性,该设备能够由于水分解,有机氧化而获得可存储的太阳能燃料(例如卤素氧化,形成,新的C-C-C
抽象的舌头拭子(TS)采样与定量PCR(QPCR)结合检测结核分枝杆菌(MTB)DNA是痰液测试结核病(TB)诊断的有希望的替代方法。在先前的研究中,擦拭舌头的敏感性通常低于痰液。在这项研究中,我们评估了两种提高灵敏度的策略。一方面,用于从2 ml悬浮液中浓缩舌头细菌,这些悬浮液从高容量的泡沫拭子样品中洗脱。将沉淀重悬于500 µL悬浮液中,然后在双目标qPCR之前机械裂解以检测MTB插入元件为6110,为1081。分级实验表明,可沉积分数中存在临床拭子样品中的大多数MTB DNA信号(99.22%±1.46%)。当适用于从124个具有推定性结核病的南非人收集的存档泡沫拭子时,该策略表现出83%的敏感性(71/86)和100%特异性(38/38),相对于痰液微生物学参考标准(MRS; Sputum; Sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum》;第二种策略使用了序列特异性磁捕获(SSMAC)来浓缩从MTB细胞释放的DNA。该方案是在存档的Copan floqswabs蜂拥而至的木材样品上进行了评估,这些拭子样品是从128个具有推定性结核病的南非参与者中收集的。将洗脱为500 µL缓冲液的材料机械裂解。通过蛋白酶K消化悬浮液,与生物素化的双靶寡核苷酸探针杂交,然后使用磁分离浓缩约20倍。在对浓缩物的双目标qPCR测试后,该策略相对于痰液MRS表现出90%的敏感性(83/92)和97%的特异性(35/36)。这些结果指向了用于检测TS中MTB DNA的可自动性高敏性方法的道路。
Sijia Wu 1,2 , Qian Wang 2 , Jun Du 2 , Qingxuan Meng 2 , Yuhao Li 2, *, Yuqing Miao 2 , Qing
抽象背景/目标:前列腺癌是男性常见的恶性肿瘤。DNA连接酶IV(LIG4)表达与前列腺癌患者的预后不良相关。Lig4连接DNA双链断裂,是这些遗传病变的必不可少的或修复。前列腺癌尚未表现出对抗PD − 1免疫疗法的临床显着反应。前列腺癌表达较低的PD − L1水平,并表现出有限的细胞毒性T淋巴细胞浸润。为了确定lig4对前列腺肿瘤发生的抑制作用,我们创建了一种在体内模型中进行的新基因设计。材料和方法:LIG4+/+; TAG和LIG4 +/-; TAG前列腺和肿瘤进行了组织病理学。用抗PD1抗体或免疫前IgG治疗前列腺肿瘤的单独组。Lig4和Pd -L1表达。通过免疫组织化学和免疫荧光显微镜确定DNA损伤修复蛋白,细胞衰老和细胞死亡标记的表达。通过SCA1/CD49 F流式细胞仪和肿瘤培养物分析了前列腺癌干细胞F疗法。pd- L1蛋白表达通过蛋白质印迹确定。结果:LIG4抑制作用诱导前列腺和癌症中的DNA双链断裂和细胞衰老,并显着降低了前列腺内上皮内肿瘤和肿瘤发生。Lig4抑制作用降低了干细胞培养物中的前列腺癌干细胞F racte and Proli fration。前列腺癌对Lig4抑制作用抗性抗肿瘤免疫反应,这是由于PD − L1表达增加而导致的。PD − 1抗体治疗。结论:抑制Lig4敏化前列腺癌对免疫检查点抑制。关键字:DNA损伤,衰老,编程的死亡受体1,凋亡,癌症干细胞。
如果说郭文博很高兴今年春天加入加州大学圣塔芭芭拉分校计算机系担任助理教授,那是一种轻描淡写。“这感觉就像梦想成真,因为计算机系在计算机安全方面有着悠久的成功历史。自从我开始读研究生以来,我就一直很钦佩加州大学圣塔芭芭拉分校的 SecLab,”郭文博说道,他指的是由乔瓦尼·维尼亚 (Giovanni Vigna) 和克里斯托弗·克鲁格尔 (Christopher Kruegel) 教授管理的计算机安全实验室。“SecLab 一直是计算机安全研究的领导者,几十年来培养了顶尖的计算机安全研究人员。现在,我可以与该实验室的优秀研究人员以及系里的许多其他才华横溢的成员一起工作。我非常幸运。”郭文博的研究将网络安全与机器学习 (ML) 相结合。他致力于为广泛的安全问题设计有效且值得信赖的基于 ML 的解决方案,包括软件安全和 ChatGPT 等大型语言模型。他自称是一个终身学习者,他说他的研究努力是由他自己遇到的现实问题驱动的。例如,在学习软件安全时,他发现自己想知道 ML 模型是否可以应用于安全应用。这种新颖的方法成为一篇论文的主题,该论文在全球顶级安全会议之一上获得了 ACM CCS 杰出论文奖。“我认为自己是一个以成果为导向的研究人员,我的动力来自于解决新颖而困难的研究挑战,”郭解释说,他在宾夕法尼亚州立大学获得博士学位,并在加州大学伯克利分校完成博士后研究。“我致力于通过开发新的、更实用的技术来解决现实世界的问题。”最近,他根据 ChatGPT 的出现调整了自己的研究方向,研究如何使其和其他类似模型安全可靠,同时研究这些模型如何帮助解决安全问题。“例如,”他指出,“人们可能会求助于 ChatGPT 来生成代码,但他们如何知道代码是否安全?”郭说,他对学习新事物的兴趣不仅限于与计算机相关的主题。自从转到加州大学圣塔芭芭拉分校后,他就已经开始尝试圣巴巴拉最独特的活动:学习冲浪。
随着研究人员建立了“生物计算机”,人类和机器的合并又向前迈出了一步。生物工程师将实验室生长的人脑组织与微电极结合在一起。科学家称其为Brainoware的创作。它处于开发的胚胎阶段,但它已经可以执行复杂的任务,例如语音识别。首席研究员冯郭博士希望他的柔和的软件将有助于推进AI技术。这也可能意味着AI硬件的能量要比仅使用硅芯片少得多。郭博士说:“这只是证明我们可以完成这项工作的概念。我们还有很长的路要走。”