蒙特卡洛 (MC) 方法已用于计算半导体中的半经典电荷传输超过 25 年,是微电子器件模拟最强大的数值工具 [1]。然而,当今的技术将器件尺寸推向了极限,传统的半经典传输理论已不再适用,需要更严格的量子传输理论 [2]。为此,人们提出了各种基于格林函数 [3] 或维格纳函数 [4] 方法的电荷传输量子动力学公式。虽然这种量子力学形式允许严格处理相位相干性,但它们通常通过纯现象学模型描述能量弛豫和失相过程。人们还提出了一种用于分析载流子-声子相互作用下的瞬态传输现象的完整量子力学模拟方案 [5]。然而,由于需要大量计算,其适用性仍然仅限于短时间尺度和极其简单的情况。因此,尽管人们付出了很多努力,尽管在研究这些量子动力学公式方面取得了无可置疑的智力进步,但它们在强散射动力学存在下的实际设备中的应用仍然是一个悬而未决的问题。Datta、Lake 和同事的最新成果似乎很有希望 [6]。然而,他们的稳态格林函数公式不能应用于时间相关的非平衡现象的分析,而这种现象在现代光电器件中起着至关重要的作用。在本文中,我们提出了一种广义 MC 方法来分析量子器件中的热载流子传输和弛豫现象。该方法基于控制单粒子密度矩阵时间演化的动力学方程组的 MC 解;它可以被视为对开放系统的扩展
在过去的几十年中,汽车应用对电子系统的强劲需求以及半导体技术工艺的不断发展,推动了专用集成电路 (ASIC) 的设计和制造,包括模拟、数字、电源和射频模块,这些模块在大幅降低生产成本的同时,还提高了系统性能和可靠性。基本上,满足模块级规范的设计问题已经逐渐从印刷电路板 (PCB) 转移到集成电路,因此当前的 IC 设计(尤其是定制 IC)大多是为了满足大多数模块级规范,包括那些涉及电磁兼容性的规范。实际上,电子模块传导和辐射电磁发射的最大限值不能轻易与 IC 级的电气参数相关联,例如直流电流消耗、时钟频率、IC 封装物理尺寸、I/O 电压和电流斜率等。同样,施加到电子模块以检查其对电磁干扰 (EMI) 的敏感性的射频干扰水平不能像任何其他设计规范那样对待。一般来说,IC 的电磁辐射和电磁敏感性与其所处的周围环境密切相关,即 PCB 布局、EMI 滤波器、PCB 接地方案、金属外壳的大小和形状等。然而,在过去的几十年里,一些
如今,增材制造 (AM) 技术被视为先进工艺,通过该技术可以逐层生产形状复杂的部件。值得注意的是,据报道,在这些技术中,在生产角度大于 45° 的部件时,不需要支撑。而当角度低于此角度时,需要有支撑来抵消重涂刀片的力并散热。事实上,在这些角度下,存在脱落导致部件故障的风险,并会增加下皮表面的严重熔渣形成(高粗糙度)。然而,通过优化一些参数,可以减小这个角度的值。因此,本论文的主题是找到 IN718 合金的优化下皮参数,以提高倾斜试件悬垂表面的质量。这项工作从对下皮参数的深入文献研究开始。我们发现,最关键的参数是悬垂角度、激光功率、激光速度、描边距离以及使用下皮参数处理的层数。基于所获得的知识,在 Prima Industrie SpA 使用 Print Sharp 250 机器对参数进行了优化。实验程序包括三个“实验设计”(DoE),第一个实验进行了重复性测试。第一个 DoE 是通过对倾斜 30°、35° 和 40° 的样品进行 3 3 因子实验进行的,修改了激光功率、激光速度和描边距离。下皮表面的粗糙度分析被用作关键性能指标。结果,找到了下皮粗糙度低于 21 µm 的最佳八组参数(角度为 35° 和 40°)(文献中 Inconel 718 在 45° 时的值为 19 µm)。为了验证结果的准确性,我们通过使用相同的参数打印和分析一些样本进行了重复性测试。检测到的变异性始终低于 5%,证实了结果的一致性。第二个 DoE 旨在使用图像分析来评估孔隙率,其中样本被切割、抛光,然后使用光学显微镜进行分析。对于最佳参数组,样本的密度始终高于 99.2%。因此,预计下皮区域的机械特性不会发生变化。最后,进行了第三个 DoE 以
飞机设计异常复杂,这有几个原因,其中之一就是该过程涉及大量完全不同的设计学科。我们投入了大量精力来协调和优化飞机设计,试图将所有学科以相同的细节水平考虑在内。在正在进行的 H2020 AGILE 研究中,正在建立飞机 MDO(多学科设计优化)流程,将多种设计工具和能力联系在一起。本文重点评估主要机载系统设计参数对其他学科的影响。从基线飞机(AGILE DC1 区域涡扇发动机)开始,已经根据飞机重量、燃油消耗和发动机性能的变化量化了每个参数的影响。该分析是一个有用的起点,可以更好地理解新型机载系统配置(如 More 和 All Electric)对整体飞机设计的重要性和影响。
校园位于市中心,坐落在一栋历史建筑内,该建筑由 BNL BNP Paribas 所有,负责 ESCP 的翻新工程。校园占地 8,000 多平方米,是都灵历史建筑修复的标志之一。该建筑最初建于 1877 年,是一座著名的新古典主义住宅,在 1942 年的轰炸中受损,后来由 BNL 于 1983 年进行了改造。当前项目由 TRA - Toussaint Robiglio Architetti、GAA*、Subhash Mukerjee Studio、Conrotto Progetti、Fionda 和 Fred srl 合作开发,在保留建筑历史特征的同时将其与当代扩建部分相结合。这种传统与创新的融合完美地体现了 ESCP 商学院的核心价值观——该学院成立于 1819 年,是世界上第一所商学院——使都灵校区不仅是创新学术的典范,也是 ESCP 愿景的具体体现:满足现代教育需求,同时不忽视其历史遗产。
考虑各种设计、运行条件和环境因素的声学效应,有效计算垂直起降场环境中的城市空中交通噪声足迹,对于在早期阶段限制噪声对社区的影响至关重要。为此,作者在 Fuerkaiti 等人 (2022) [ 11 ] 中提出了计算效率高的低保真方法,并将其扩展为计算飞机在一般 3D 环境中的噪声足迹。直射线传播器被高斯波束追踪器取代,该追踪器考虑了复杂的源方向性、3D 变化地形拓扑和风廓线。作者在之前的研究中已经验证了高斯波束追踪器的可靠性。在本文中,它进一步扩展为包括存在移动介质时的复杂源方向性。使用低保真工具链获得的噪声源存储在围绕飞机的球体上,并通过不均匀的各向异性大气传播。比较了针对不同地形拓扑结构、源方向性和风流条件预测的噪声足迹。结果表明,与平坦地形相比,对于所研究的情况,由于多次反射,建筑块在照明区域中使地面噪声水平增加了 5 dB;它们还通过在建筑物后面创建阴影区来屏蔽传入的声场。在静止的大气中,屏蔽作用随着频率的增加而增强。 变化
关键词:无人机摄影测量、快速测绘、遥感、地震应急、3D 模型、损害评估 摘要:自 2016 年 8 月以来,意大利发生的多起地震群表明,深化测绘研究对于验证新战略的重要性,这些新战略旨在快速测绘和记录不同可访问和复杂的环境,例如城市环境和受损的建筑遗产。在应急响应中,技术进步的关键利用应该为预警、影响和恢复阶段获取和有效组织高比例的可靠地理空间数据。为了解决这些问题,哥白尼 EMS 现已在意大利中部地区的即时和广泛损害侦察中发挥了重要作用。然而,遥感数据的使用仍然受到视点、尺度和可检测细节问题的影响。事实上,无论是机载还是卫星拍摄的天底图像,都极大地限制了这些产品的可信度。无论是在第一次实地工作评估中,还是在随后的解释性损坏检测和快速制图生产的操作方法中,操作员参与的主观性仍然是一个悬而未决的问题。为了克服这些限制,引入无人机平台进行摄影测量,在节省时间、操作员安全、可靠性和结果准确性方面已被证明是一种可持续的方法:天底和斜向积分可以提供大型多尺度模型,其中包含与立面条件相关的基本信息。在意大利中部地震事件中进行的这项研究将重点关注无人机摄影测量在两个记录地点的潜力和局限性:佩斯卡拉德尔特龙托和阿库莫利。在这里,目的不仅限于描述一系列地理参考、块定位和多时间联合配准解决方案的策略,而且还要验证实施的管道作为工作流程,该工作流程可以集成到早期影响活动中的紧急响应操作干预中。因此,可以使用这种 3D 度量产品作为参考数据,以显着提高典型目视检查和测绘的可靠性,与传统的天底机载或卫星产品并驾齐驱。展示了在两个受损村庄进行的无人机采集,以强调嵌入在 DSM 重建和 3D 模型中的空间信息的含义,支持更可靠的损害评估。
量子计算可以开发出一种新型算法,在多项式时间内解决一些已知的难题,这引起了人们对它日益增长的兴趣。它的应用领域非常广泛,从金融[1]到化学,因此大量公司都在投入资源进行开发。IBM [2]和Google [3]等重要参与者已经开始开发量子计算机来执行这些算法,并创建了可供全球用户使用的解决方案,比如SDK和量子编程语言。正如我们从图1.1中看到的那样,这些技术预计将会非常快地发展,因为预计在两年内,量子设备能够存储和管理的信息量将提高一个数量级。