摘要较快的Z/X假说预测,性别连接基因应比常染色体基因更快。但是,跨不同谱系的研究表现出对这种效果的混合支持。到目前为止,大多数分析都集中在旧且差异化的性染色体上,但是对最近获得的新性别染色体的差异知之甚少。在鳞翅目(飞蛾和蝴蝶)中,Z-大体融合很频繁,但是尚未详细探讨Neo-Z染色体的进化动力学。在这里,我们分析了一种具有三个Z染色体的蝴蝶叶leptidea sinapis中的较快效应。我们表明,NEO-Z染色体已逐步获得,导致分化和男性化层。虽然所有Z染色体均显示出更快的Z效应的证据,但对最年轻的Neo-Z染色体(Z3)的基因的选择似乎已被完全完整的,同源的Neo-W染色体阻碍。然而,缺乏W种子学的中等老化的Neo-Z染色体(Z2)显示出更少的进化约束,从而导致了特别快速的进化。因此,我们的结果支持新性别染色体可以构成适应性和差异的暂时热点。潜在的动力学可能与选择性约束,基因表达的演变以及W连锁的配子学的变性有因果关系,这些伴奏逐渐将Z-C-C-C-C-C-Rinked基因暴露于选择。关键字:更快的Z,新性别染色体,性别偏见的基因表达,鳞翅目,选择
原始生殖细胞(PGC)是配子的胚胎前体。在小鼠和大鼠中,PGC可以通过形成胚胎生殖细胞(EGC)轻松地在体外获得多能性。迄今为止,尽管人类PGC(HPGC)在生殖细胞肿瘤发生的背景下很容易经历多能转化,但在人类中尚未建立可比的体外系统。在这里,我们报告说,HPGC样细胞(HPGCLC)在暴露于先前用于得出小鼠EGC的相同感应信号后经历人类胚胎类细胞(HEGCLC)。这种定义的无馈物培养系统允许有效地推导人EGCLC,可以在标准的人类多能干细胞培养基中扩展和维持。HEGCLC在转录上与人类多能干细胞(HPSC)相似,并且可以区分所有三个细菌层,并再次引起PGCLC,证明了多能状态的互助性。这在表观遗传水平上也很明显,因为在HPGCLC中发生的初始DNA脱甲基化在HEGCLC中很大程度上逆转,将DNA甲基恢复到HPSC中观察到的水平。这种新的体外模型捕获了从多能干细胞状态到生殖细胞身份并再次返回的过渡,因此代表了一个高度可牵引的系统,用于研究多能和表观遗传转变,包括在人类生殖细胞肿瘤发生过程中发生的多能和表观遗传转变。
使用库存管理的加固学习(RL)是研究的新生领域,方法往往限于简单的线性环境,其实现是对架子RL算法的较小修改。将这些简单的环境扩展到现实世界中的供应链带来了一些挑战,例如:最大程度地降低环境的计算要求,指定代表现实世界商店和仓库动态的代理的代理配置,并指定一个鼓励整个供应链中理想行为的奖励框架。在这项工作中,我们介绍了一个具有自定义GPU平行的环境的系统,该系统由一家仓库和多家商店组成,一种用于构图增强状态和动作空间的代理环境动力学的新型体系结构,以及共享的奖励规格,旨在为大型零售商的供应链的供应链的需求进行优化。供应链图中的每个顶点都是一个独立的代理,基于其自身的库存,能够将补充订单放在上游的顶点。仓库代理人除了订购供应商的订单外,还具有能够将补给品限制到下游的商店的特殊特征,这导致它学习了其他分配子政策。我们实现了一个超过标准库存控制政策的系统,例如基本库存策略和其他基于RL的产品的规范,并为多种产品提供了未来的工作方向。
摘要 帽结合蛋白 eIF4E 通过与 eIF4G 相互作用构成 eIF4F 复合物的核心,该复合物在 mRNA 的环化及其随后的帽依赖性翻译中起关键作用。除了在 mRNA 翻译起始中的基本作用外,还描述或提出了 eIF4E 的其他功能,包括充当前病毒因子和参与性发育。我们使用 CRISPR/Cas9 基因组编辑生成了甜瓜 eif4e 敲除突变株系。编辑在甜瓜中有效,因为我们在 T0 代就获得了第一个 eIF4E 外显子中单核苷酸纯合缺失的转化植物。分离 F2 代的编辑和非转基因植物接种了摩洛哥西瓜花叶病毒 (MWMV);纯合突变植物表现出病毒抗性,而杂合和非突变植物被感染,这与我们之前对 eIF4E 沉默植物的结果一致。有趣的是,T0 和 F2 代的所有纯合编辑植物都表现出雄性不育表型,而与野生型植物杂交则恢复了育性,表明雄性不育表型的分离与 eif4e 突变的分离之间存在完美的相关性。对甜瓜雄花沿连续发育阶段的形态学比较分析表明,小孢子母细胞和绒毡层在减数分裂后发育异常,突变体和野生型的绒毡层降解时间明显不同。RNA-Seq 分析确定了花粉发育中的关键基因,这些基因在 eif4e/eif4e 植物的花中下调,并表明 eIF4E 特异性 mRNA 翻译起始是甜瓜雄配子形成的限制因素。
人为时代的生物多样性损失危机需要研究非模型生物的新工具。大象既是一种濒危物种,又是研究复杂表型(例如大小,社会行为和寿命)等复杂表型的出色模型,但它们仍然严重研究。在这里,我们报告了通过化学媒体诱导和菌落选择的两个步骤,然后对大象转录因子Oct4,Sox2,Sox2,sox2,klf4,myc±nanog and Lin28a和MADENATION进行过度表达,然后通过化学媒体诱导和菌落选择过度表达了大象诱导的多能干细胞(EMIPSC)的第一个推导。自Shinya Yamanaka进行重新编程以来,已经报道了来自许多物种在内的许多物种的IPSC,包括功能灭绝的北部白鼻菌,但EMIPSC仍然难以捉摸。对于多种物种,与小鼠和人类(如小鼠和人类)相比,采用了重编程方案,但我们的EMIPSC方案几乎没有变化,但我们的EMIPSC方案需要更长的时间表和抑制TP53扩张基因,这些基因被认为可以在大象中赋予独特的癌症。IPSC解锁了探索细胞命运,细胞和组织发育,细胞疗法,药物筛查,疾病建模,癌症发展,配子发生及其他方面的巨大潜力,以进一步了解我们对这一标志性的巨型巨型。这项研究为遗传拯救和保护的晚期非模型生物细胞模型打开了新的边界。
摘要:鸟类(鸟纲)是陆地脊椎动物中种类最多的物种,具有类特异性特征,但外部表型多样性令人难以置信。鸟类对农业至关重要,也是模式生物,它们已经适应了许多栖息地。鸟类是恐龙的唯一现存例子,它们出现于约 1.5 亿年前,目前有 10% 以上濒临灭绝。这篇综述全面概述了鸟类基因组(“染色体”)组织研究,主要基于染色体涂绘和基于 BAC 的研究。我们讨论了可靠地生成染色体水平组装和以比以前更高的分辨率和更宽的系统发育距离分析多个物种的传统和现代工具。这些结果允许对染色体间和染色体内重排进行更详细的研究,为进化和物种形成机制提供独特的见解。“标志性”鸟类核型可能出现于约 2.5 亿年前,在大多数群体(包括灭绝的恐龙)中基本保持不变。例外包括鹦鹉形目、隼形目、隼形目、鹃形目、鲹形目,偶尔还有雀形目、鹳形目和鹈形目。这种显著保护的原因可能是二倍体染色体数目较大,通过更多可能的配子组合和/或增加重组率产生变异(自然选择的驱动因素)。更深入地了解鸟类基因组结构,可以探索与进化断点区域和同源连锁块的作用有关的基本生物学问题。
恢复缺乏减数分裂辅酶的染色体基因座中的减数分裂重组(Schmidt等,2020; R r€Onspies等,2022)。相比之下,多个或“丰富”的重排通常会导致减少减数分裂染色体的分离和非整倍型配子,从而损害了植物的生存能力(Heng,2019年)。许多核型重排可能会导致密切相关的加入之间的生殖屏障,从而导致物种的早期步骤(Lucek等,2023)。这些“丰富”的染色体重排通常由涉及影响一个或多个染色体的几十个断点(甚至数百个)的重排的复杂组合,从而导致结构和/或数值核型变化(Schubert,2024)。在“ Chromoana-Genesis”事件期间出现了多个同时重排,这是由“灾难性”现象引起的,例如DNA复制期间的压力,DNA修复缺陷,暴露于遗传毒性剂(Guo等人,2023年,2023年)或异常的Centromere Centromere行为(目前的审查的重点)。大多数受许多重排影响的生物或细胞可能灭亡。然而,具有可行的新型核型的一小部分可能会持续存在,从而导致基因流势和潜在触发物种(Lucek等,2023)。观察到密切相关的物种在其核型排列中可能会有很大差异,这支持了这一假设。染色体。(2023),在Hoang等人中看到了一些假定的例子。(2022)和Tan等。(2023)。(2024)和Martin等。最近在Lucek等人中回顾了核型变化的核型变化。(2023)在Ferguson等人中看到的植物中有一些最新推定的例子。(2020)。
人为时代的生物多样性损失危机需要研究非模型生物的新工具。大象既是一种濒危物种,又是研究复杂表型(例如大小,社会行为和寿命)等复杂表型的出色模型,但它们仍然严重研究。在这里,我们报告了通过化学媒体诱导和菌落选择的两个步骤,然后对大象转录因子Oct4,Sox2,Sox2,sox2,klf4,myc±nanog and Lin28a和MADENATION进行过度表达,然后通过化学媒体诱导和菌落选择过度表达了大象诱导的多能干细胞(EMIPSC)的第一个推导。自Shinya Yamanaka进行重新编程以来,已经报道了来自许多物种在内的许多物种的IPSC,包括功能灭绝的北部白鼻菌,但EMIPSC仍然难以捉摸。对于多种物种,与小鼠和人类(如小鼠和人类)相比,采用了重编程方案,但我们的EMIPSC方案几乎没有变化,但我们的EMIPSC方案需要更长的时间表和抑制TP53扩张基因,这些基因被认为可以在大象中赋予独特的癌症。IPSC解锁了探索细胞命运,细胞和组织发育,细胞疗法,药物筛查,疾病建模,癌症发展,配子发生及其他方面的巨大潜力,以进一步了解我们对这一标志性的巨型巨型。这项研究为遗传拯救和保护的晚期非模型生物细胞模型打开了新的边界。
摘要 未来几十年将迎来商业航天和低地球轨道以外长期任务的时代。泌尿系统挑战和状况一直是人类航天史的核心,其有效管理将继续在未来的努力中发挥关键作用。排尿设备,例如国际空间站上的通用废物管理系统,是改善非地面废物消除和收容设备的可用性和功能性方面取得的重大技术进步的象征。过去几十年的详细调查表明,机组人员患肾结石的风险增加,这在很大程度上是由于微重力的影响。肾结石及其潜在的致残作用是可能影响未来长期任务成功的最严重泌尿系统并发症之一。其他泌尿系统疾病,如尿路感染、尿潴留和尿失禁,在飞行过程中都有充分记录,并带来自身的挑战。虽然预防措施仍然是所有缓解策略的核心,但 S 型超声、突发波碎石术和超声推进等成像和治疗方式正在被开发和评估为飞行中泌尿系统病理学的对策。已经进行了抛物线飞行,以开发和评估使用手术和内窥镜技术在微重力条件下治疗泌尿系统疾病的可行性。虽然讨论较少,但与职业相关的受孕延迟和辐射引起的配子损伤风险表明,NASA 可能需要为男性和女性宇航员制定辅助生殖技术政策。过去 60 年的载人航天为发现和医疗技术创新提供了独特的机会。本文旨在强调有助于为未来 60 年载人航天铺平道路的进步。
1。山东大学妇女,儿童和生殖健康研究所,中国250012。2。国家繁殖医学和后代健康的主要实验室,妇女,儿童与生殖健康研究所,山东大学,250012,中国。3。国家辅助生殖技术与生殖遗传学研究中心,山东大学,吉南,山东,250012,中国。4。繁殖内分裂症的主要实验室(山东大学),教育部,吉南,山东,250012,中国。5。Shandong Technology Innovation for Gredoductive Health,Jinan,Shandong,250012,中国。6。山东省临床临床研究中心,吉南,山东,250012,中国。7。Shandong的生殖研究和预防先天缺陷的主要实验室,Jinan,Shandong,250012,中国。8。中国医学科学院(No.2021RU001)的Art-Offspring的配子发生和健康研究单位,中国250012,Jinan,Shandong。9。基础医学科学学院,山东大学,吉南250012,中国。10。国家蛋白质组学医学蛋白质组学的主要实验室,北京蛋白质科学中心(北京),北京生命学研究所,中国北京102206。11。中国山东大学山东大学切鲁大学医学院第二医院生殖医学中心,中国山东250012。12。13。14。广州广州妇女和儿童医疗中心,广州,广州,510623,中国。Cuhk-SDU生殖遗传学联合实验室,中国香港中国大学生物医学科学学院,中国香港。繁殖与遗传学中心,妇产科系,USTC第一家附属医院,生命科学与医学部,中国科学技术大学,Hefei,Hefei,Anhui,Anhhui,230001,中国。
