扩展数据图 1. 使用 RFdiffusion 设计 β 链配对支架。为了充分利用 RFdiffusion 的多样化生成潜力,同时鼓励在设计输出中使用 β 链界面,我们实现了一种界面调节算法,该算法可根据简单的用户输入生成 SS/ADJ 调节张量。该模型以张量的形式理解折叠调节,这些张量标记每个残基(a,顶部和左侧)的二级结构(蓝色)以及这些二级结构块的邻接关系(a,黄色中心)。用户指定的参数指定了以下信息:结合剂界面二级结构块(在本例中为 β 链)、该块的长度(b,结合剂张量 L 中的青色块)以及结合剂块相邻的靶位残基(b,靶位张量 T 中的青色块)。根据这些预定义参数,该算法随机采样结合剂界面二级结构块在残基索引空间中的位置,同时保持与指定靶位残基的确定邻接关系(绿色)。该用户定义的调节张量将扩散输出导向β链配对的结合物-靶标界面 (c)。此前,RFdiffusion 界面设计计算可以针对指定为靶标“热点”的特定残基,以指定要结合的靶标残基。而这种新的链间 SS/ADJ 调节功能,使用户能够在结合物支架生成过程中指定“β链热点”或“ɑ-螺旋热点”。基于扩展的结合物-靶标 SS/ADJ 张量调节的结合物支架输出,支持用户指定 β 链界面类型的设计。
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
主要技术能力和设施 FRV 是可再生能源领域的先驱,它可以建造、运营、资助和维护使用可再生能源及其清洁能源载体氢能的设施。2019 年,它推出了卓越的 FRV-x 平台,专注于开发与可再生能源相关的创新解决方案,以覆盖难以脱碳的行业,例如移动出行。它还成功地开发了储能系统,目前正在开发高达 100 兆瓦的电池项目。在氢能技术方面,FRV 是 Abdul Latif Jamil 的一部分,该实体专注于提供可持续的移动出行服务,其使命是开发将这些清洁能源引入运输部门的解决方案。FRV 建立了可靠而稳定的合作伙伴关系,允许实施与绿色能源市场相关的市场上具有最佳技术和经济选择的解决方案。对于 FRV 来说,质量是一种差异化价值,在所有情况下都会选择市场上最可靠和最可信的解决方案。
注意:如果有任何答案密钥的挑战应通过大学校长的正式货车发送给mcqcomplaints@kuhs.ac。在2025年1月27日或之前下午5点,有效的参考证明相同。在规定的时间和日期之后收到的挑战不会以任何代价考虑。24))DOS
摘要。动态分散功能加密(DDFE)。(加密20)表示(多客户)功能加密的强大概括。它允许用户动态加入并贡献私人输入,以单独控制联合功能,而无需信任的权威。最近,Shi和Vanjani(PKC'23)提出了用于掩盖功能内部产品(FH-IP)的第一个多客户功能加密方案,而无需依赖随机的甲壳。毫无意义地,他们的构建仍然需要一个值得信赖的关键权威,因此,打开了一个问题,即标准模型中是否可以存在全面的FH-IP-DDFE。在这项工作中,我们通过引入可更新的伪零共享来回答这个问题,这是一个新颖的概念,它提供了在标准模型中构建安全DDFE计划所需的关键功能和安全性。我们的第二个贡献是一种新颖的证明策略,它在将FH-IP的任何功能加密方案转换为FH-IP-DDFE时可以保持自适应安全性。一起,这两种技术实现了FH-IP-DDFE的模块化构造,该模块化是可抵抗标准模型中自适应消息和关键查询的安全性。此外,我们的伪零共享方案具有很高的用途,可以在标准模型中获得属性加权总和的第一个DDFE,并补充了Agrawal等人最近基于ROM的结构。(加密23)。
摘要:我们评估了未配对的图像到图像翻译网络的适用性,以纠正通过全球大气循环模型模拟的数据。我们使用无监督的图像对图像翻译(单元)神经网络体系结构来映射在以南亚季风为中心的地理区域中的HADGEM3-A-N216模型和ERA5重新分析数据之间的数据,该区域中具有充分记录的严重偏见。单位网络构建了跨变量的相关性和空间结构,但产生的偏置校正比目标分布少。通过将单位神经网络与经典的分位数映射技术(QM)相结合,我们可以制定比任何一个单独的偏差校正。单元1 QM方案显示可以纠正单个变量的跨变量相关性,空间模式和所有边际分布。对这种联合分布的仔细校正对于化合物极端研究至关重要。
描述有助于在复杂的遗传实验中找到有意义的模式。第一个GIMAP从配对的CRISPR(群集的定期间隔短壁画重复序列)中获取数据,该屏幕已预处理到计数配对GRNA的计数表(指南ribonucleic Acid)读取。当残疾基因或成对的基因或对时,IN-POT数据将具有细胞计数的细胞计数。“ GIMAP”套件的输出是遗传互动得分,它是观察到的CRISPR评分与被指出的CRISPR评分之间的距离。预期的CRISPR分数是我们对两个无关基因的CRISPR values的期望。越远,观察到的CRISPR得分是从其表达的得分中,我们越怀疑遗传相互作用。这项包装中的工作基于弗雷德·哈钦森癌症Center(2021)的Alice Berger实验室的原始研究。
细胞命运多样性,因此是免疫功能的调节。3,6癌症,先天和适应性免疫反应在与恶性细胞作斗争中强烈合作。在自适应免疫系统中,表达细胞表面CD8的细胞毒性T细胞(分化8)是抗癌免疫反应中最有效的效应子,并形成了当前成功的癌症免疫疗法的主链。7尽管如此,T淋巴细胞的功能失调的免疫反应可能导致癌症的进展。8研究双向细胞 - T淋巴细胞与癌细胞之间的细胞相互作用将揭示癌细胞(I)抗药性的基本机制以及(ii)T淋巴细胞活性对恶性细胞的功能障碍。癌细胞和免疫效应子的异质性及其相互作用是恶性疾病的标志。 在血液系统恶性肿瘤中,与急性髓细胞性白血病(AML)一样,免疫生物学甚至更复杂,因为白血病细胞具有正常造血祖细胞的某些免疫学特征,并且在骨骨髓元素或循环血液等各种环境中可能发生相互作用。 9因此,AML是突出研究重要性的理想模型。 事件的精细而动态的监视(例如 ,钙动员)在IS形成过程中突出了统治细胞命运的关键机制。 是形成将导致事件从T淋巴细胞和白血病细胞之间的初始接触开始,并在数小时内延伸。 这些事件包括癌细胞和免疫效应子的异质性及其相互作用是恶性疾病的标志。在血液系统恶性肿瘤中,与急性髓细胞性白血病(AML)一样,免疫生物学甚至更复杂,因为白血病细胞具有正常造血祖细胞的某些免疫学特征,并且在骨骨髓元素或循环血液等各种环境中可能发生相互作用。9因此,AML是突出研究重要性的理想模型。事件的精细而动态的监视(例如,钙动员)在IS形成过程中突出了统治细胞命运的关键机制。是形成将导致事件从T淋巴细胞和白血病细胞之间的初始接触开始,并在数小时内延伸。这些事件包括