本报告是作为美国政府机构赞助的工作的说明而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 — 风能因其不确定性给输配电系统带来了新的挑战。风力涡轮机 (WT) 对上游网络向配电系统公司 (DISCO) 收取的实际费用的影响是一个挑战。此外,当 WT 的并网逆变器以超前或滞后模式运行时,WT 会从系统中吸收或注入无功功率。本文提出了一种方法来评估 WT 运行模式的重要性,以便在存在系统不确定性的情况下最大限度地降低 DISCO 的成本。因此,通过确定最佳重构配电系统中 WT 的最佳位置和大小,制定了一个优化问题,以最大限度地降低 DISCO 的成本。此外,提出了一种改进的基于向量的群优化 (IVBSO) 算法,因为它非常适合基于向量的问题。在模拟中使用了两个配电系统来评估所提出的算法。首先,使用 IEEE 33 节点测试系统验证了 IVBSO 算法比其他启发式算法能得出更优解的能力。其次,使用 Bijan-Abad 配电系统 (BDS) 证明了所提优化问题的有效性。据此,配电系统模型、风速累积分布函数和负荷曲线均从 BijanAbad 地区的实际数据中提取出来。最后,将优化问题应用于 BDS 中风电机组的超前和滞后模式。结果表明,当风电机组在滞后模式下运行时,配电系统的总成本低于在超前模式下运行时。
摘要:监管委员会正在推广封闭式配电系统 (CDS),它不同于传统的公共接入网络,可以由能源社区 (EC) 拥有和管理。CDS 中包含本地可再生能源潜力和充足的存储设备计划,允许 EC 成员之间进行合作,以降低运营支出 (OPEX),提供相对于公共监管网络和电力市场提供的电价具有内部竞争力的电价。CDS 运营商可以承担新的角色,即发电和存储资产的集中能源调度员,以最大限度地提高 EC 成员的利润。本文提出了一种创新的最佳有功和无功功率调度模型,以实现社区福利最大化。该提案与现有的公共接入网络上基于社会福利的调度之间的一个关键区别是排除了外部批发电力市场的利润。所提出方法的重点是最大限度地提高所有社区成员的福利。采用基于单一边界的集体 EC 的薪酬框架,考虑基于位置边际定价 (CDS-LMP) 的成员之间的协议。案例研究的结果显示,欧盟委员会对 CDS、可再生能源和存储的投资运营支出减少了 50%,回收期为 6 年。
摘要:2020 年 9 月,美国联邦能源管理委员会 (FERC) 发布了第 2222 号命令,向小容量分布式能源 (DER) 开放批发市场,承认它们通过提供大容量电网服务在提高运营效率方面的潜力。因此,需要一种能够连接输电和配电 (T&D) 模拟并评估 DER 提供大容量电网服务影响的联合仿真能力。在本文中,我们提出了一个新型集成 T&D 联合仿真平台,该平台结合了 T&D 系统模拟器、DER 聚合器/组策略和联合仿真协调器。采用行业标准通信协议来模拟真实情况。选择二次频率调节作为代表性大容量电网服务,并模拟 DER 对频率调节信号的响应。美国科罗拉多州太阳能丰富的配电馈线的模拟结果展示了如何使用 T&D 联合仿真设置来评估 DER 的贡献以最大限度地减少大容量电网频率偏差。
配电支持战略的起源可以追溯到 2014 年发布的第一份电网现代化战略文件,该文件为电网的发展提供了愿景,但缺乏可行的计划。2019 年,该战略进行了更新,并重新命名为配电支持战略,并启动了一项计划来管理其执行情况。路线图每年都会进行审查和更新,这使我们能够考虑趋势、进展和经验教训,以确保我们调整计划并继续关注最重要的优先事项。2024 年 5 月,我们将进入第六次迭代,部署 FY25 配电支持路线图,该路线图将继续提升我们的能力并实现我们对未来的愿景。这种反复而持续的努力已经建立了许多重要的基础和进步,将为 SRP 的配电网未来几十年的发展提供支持。
摘要:电力需求的大幅增长导致配电网拥堵加剧。挑战是双重的:需要扩大和现代化电网以满足这种增长的需求,同时也需要实施智能电网技术来提高电力分配的效率和可靠性。为了缓解这些拥堵,可以使用电池储能等灵活性来源的新方法。这涉及使用电池存储系统在低需求时吸收多余的能量并在高峰时间释放,从而有效平衡负载并减轻电网压力。本文讨论了两种最佳潮流公式:分支潮流模型(非凸)和放松母线注入模型(凸)。这些公式确定了灵活性来源(即电池储能)的最佳运行,目的是最大限度地减少功率损耗同时避免拥堵。此外,还对这两种公式的性能进行了比较,分析了目标函数结果和灵活性操作。为此,我们使用了真实的西班牙配电网络及其相应的七天负载数据。
“安装架空变压器”(AE 标准 1315)(包括断路器、保险丝和支架)—EA “安装拉线”(AE 标准 1163 和标准 1169)(包括电线、臂、支架和锚固件)—EA “安装空气开关”(AE 标准 1370)(包括夹具和避雷器)—EA “安装电容器组”(AE 标准 1349)(包括连接器、保险丝、跳线、避雷器和变压器)—EA “安装立管初级和次级”(AE 标准 1360)(包括地上和地下导管到连接点、支架、断路器、保险丝和断路器)—EA “安装路灯”(AE 标准 1945)(包括所有连接和接头)—EA “安装避雷器” (AE 标准 1368)(包括跳线和夹具)—EA “拆除电线杆”—EA “拆除架空电线”—LF “拆除电缆”—LF “拆除路灯”—EA
“带宽”是指分销商定义的容差,用于在 VEE 流程中将当前读数与等效历史计费周期的读数进行比较的阶段标记需要进一步审查的数据。例如,30% 的带宽意味着,如果当前读数比等效历史计费周期的测量值低 30% 或高 30%,VEE 流程将识别为需要进一步审查和验证;
摘要:由于离线控制光伏 (PV) 电站不具备在线通信和远程控制系统,因此无法实时调节功率。因此,在离线控制光伏饱和的配电网中,配电系统运营商 (DSO) 应考虑可再生能源的不确定性来调度分布式能源 (DER),以防止因过压而导致的限电。本文提出了一种使用移动储能系统 (MESS) 和离线控制光伏的日前网络运行策略,以最大限度地减少功率削减。MESS 模型有效地考虑了 MESS 的运输时间和功率损耗,并模拟了各种操作模式,例如充电、放电、空闲和移动模式。优化问题基于混合整数线性规划 (MILP) 制定,考虑到 MESS 的空间和时间操作约束,并使用机会约束最优潮流 (CC-OPF) 执行。离线控制光伏的上限基于概率方法设定,从而减轻由于预测误差导致的过电压。所提出的运行策略在 IEEE 33 节点配电系统和 15 节点运输系统中进行了测试。测试结果证明了所提出方法在离线控制光伏系统中最小化限电的有效性。
技术和科学进步体现在三个层面。在服务器层面,开发了一种创新的低功耗管理系统,该系统可协调深度睡眠状态和动态电压频率调整,并为给定的工作负载和流量模式选择最佳的电源状态配置。在机架/数据中心层面,开发了一种新的工作负载调度算法,以提高数据中心层面的能源效率。这种新算法收集工作服务器的系统统计数据,以预测功率水平并触发负载迁移,以要求所有服务器以峰值能效运行。在数据中心层面,项目团队开发了一种解决方案,使数据中心能够通过调整其能源消耗来向电力市场提供辅助服务。