3.未来发展 未来我们计划继续研究和开发该系统,并通过在各公司反复的现场试验和改进来提高其性能。 此外,该联合研究框架允许总承包商共同推动研究和开发,融入各种想法并在短时间内取得优异成果。希望本次研发能够利用人工智能解决总承包商面临的常见技术问题,为提高整个建筑行业的技术能力做出贡献。 ※参与联合研究项目的20家公司(按字母顺序) 青木阿苏那罗建设株式会社 浅沼组株式会社 安藤间株式会社 奥村组株式会社 北野建设株式会社 熊谷组株式会社 五洋建设株式会社 佐藤工业株式会社 大末建设株式会社 高松建设株式会社 铁拳建设株式会社 东急建设株式会社 户田建设株式会社 飞岛建设株式会社 西松建设株式会社 日本土地开发株式会社 长谷工業株式会社 PS三菱株式会社 松村组株式会社 矢作建设株式会社
癌症的不可控性和转移性使其病情更加恶化和难以预测。因此,许多疗法和药物被用于控制和治疗癌症。然而,除此之外,许多药物会引起各种副作用。在美国,近 8% 的患者因副作用而入院。发达国家的癌症患者更多,这与他们的生活方式有关。有各种植物成分分子,其中白藜芦醇 (RSV) 是最适合癌症的分子,因为它对身体的不良影响明显较小。RSV 通过调节各种途径(如磷酸肌醇 3 激酶 (PI3K)/蛋白激酶 B (AKT)/哺乳动物雷帕霉素靶蛋白 (mTOR) 途径)来抑制细胞增殖的启动和进展。 RSV 降低了细胞周期调节蛋白(如细胞周期蛋白 E、细胞周期蛋白 D1 和增殖细胞核抗原 (PCNA))的水平,并诱导细胞色素 c 从线粒体释放,导致细胞凋亡或程序性细胞死亡 (PCD)。RSV 的巨大优势也带来了一些挑战,因此,RSV 在水中的溶解度较差,即 0.05 mg/mL。由于 RSV 被肝脏和肠道高度代谢,因此生物利用度较差。令人惊讶的是,RSV 代谢物也会诱导 RSV 的代谢。因此,尿液中以不变形式存在的 RSV 量明显减少。由于生物利用度差、水溶性较低以及在体内停留时间长等挑战,研究人员决定制造纳米载体以实现更好的递送。采用纳米制剂技术,局部渗透率提高 21%,纳米封装得到改善,从而使生物利用度和渗透性提高许多倍。因此,本综述描述了 RSV 及其用于提高抗癌活性的纳米制剂的完整概况以及专利调查。
目的:在糖尿病患者中,伤口愈合受损,伤口通常被多因素剂感染。这项研究旨在比较圣约翰麦芽汁和含有杆状蛋白毒素神经素(硫氨基链)的有效性,以改善糖尿病感染伤口模型中的伤口愈合。方法:如果72小时后,如果其血糖水平高于300 mg/dl,则通过施用60 mg/kg链蛋白酶(STZ)诱导糖尿病的大鼠被认为是糖尿病。组1:对照组(非糖尿病)组,第2组:糖尿病组。在伤口护理期间,两组都被povidone碘(PI)消毒,每只老鼠的右腰部区域都穿着硫氨甲,左腰部地区穿着圣约翰麦芽汁油。考虑到伤口愈合期,该研究平均20天后终止。在组织病理学检查,溃疡,坏死,上皮化,充血,水肿,多态核定白细胞(PNL),单核细胞,成纤维细胞和新血管化中。结果:在组织病理学评估中,与给定的硫氨氨酸的组相比,用圣约翰麦芽汁油治疗的组的溃疡和坏死在统计学上显着下降(p = 0.04)。在上皮化方面,与给定的硫氨基林的组相比,穿着圣约翰麦芽汁油的组的统计学意义在统计学上显着增加(p = 0.03)。与给定硫氨基林的组相比,用圣约翰麦芽汁油处理的组的充血和水肿的统计学显着降低(p = 0.03)。与给定的硫氨基林的组相比,用圣约翰麦芽汁油处理的组的成纤维细胞和新血管化的统计学显着增加(p = 0.02)。结论:在伤口愈合过程中具有重要功能的组织病理学盟友,上皮化,成纤维细胞和新血管形成,在糖尿病大鼠中增加了圣约翰麦芽汁的糖尿病大鼠。尽管由于其抗抑郁药的有效性而用于传统医学中,但我们认为,圣约翰麦芽汁可用于糖尿病患者发育的伤口,因为它有可能增加伤口愈合过程。
2020 年,美国能源部 (USDOE) 提出了一项以储能为重点的重大挑战,这是该机构首次提出的综合性方法。[1] 鉴于锂离子电池技术在解决短储能时长(<4 小时)方面取得的成功,[2] 储能研究的重点已转向长储能方法,这种方法倾向于将电力和能源分离以实现灵活的电网安装。液氢载体是一种可以利用现有基础设施并利用质子交换膜 (PEM) 燃料电池的高效率/成熟度在需要时释放储存能量的方法。[3] 为此,我们专注于肼 (N2H4),它含有 12.5% 的 H2(重量),已被纳入燃料电池应用。[4,5] 虽然 N2H4 可以通过多种工艺在工业上生产,但它通常是通过 NH3 的氧化制成的,而 NH3 目前的基础设施和碳足迹相当可观。[6] 如果
金属配位导向大环复合物,其中大环结构由金属-配体配位相互作用形成,已成为一种有吸引力的超分子支架,可用于创建生物传感和治疗应用材料。尽管最近取得了进展,但不受控制的多环笼和线性低聚物/聚合物是最有可能的金属配体组装产物,这对当前的合成方法提出了挑战。本文我们概述了使用可折叠配体或通过组装两亲配体合成金属配位导向大环复合物的最新合成方法。这篇小综述为高效制备具有可预测和可控结构的金属配位导向大环复合物提供了指导,这些复合物可在许多与生物相关的领域得到应用。
我关心的是,你和你的读者都明白,《星报》的工作人员有时也会像他们的长辈一样犯错,成熟的判断往往很难做到,我们都生活在一个充满极端质疑和不确定性的时代,我们的大学——尽管它可能与世隔绝——但却与滋润全国每一所学校的文化潮流融为一体,浮躁的青年人和安定的老年人必须找到交流的领域,而且——最终——互相攻击、指责或责骂都不会解决任何问题。
Dao等。 发现,在高脂喂养的糖尿病小鼠模型中,白藜芦醇增加了GLP-1的释放[23]。 Pegah等。 与糖尿病基团相比,白藜芦醇和益生菌的结构显着增加了非糖尿病大鼠的GLP-1和总抗氧化能力[24]。 但是,Knop等人进行的一项研究。 证明白藜芦醇并未直接构成GLP-1的释放[25]。 白藜芦醇可能会通过acti vesti基因(例如SIRT1和FOXO基因)来表达GLP-1在肠道和CNS中的影响[16]。 蛋白质的FoxO家族是参与各种生理和病情逻辑过程的转录因子,例如细胞稳态,干细胞维持,癌症,代谢和汽车双耳疾病[26]。 因此,迄今为止,白藜芦醇对释放的白藜芦醇的机械性仍然存在争议。Dao等。发现,在高脂喂养的糖尿病小鼠模型中,白藜芦醇增加了GLP-1的释放[23]。Pegah等。与糖尿病基团相比,白藜芦醇和益生菌的结构显着增加了非糖尿病大鼠的GLP-1和总抗氧化能力[24]。但是,Knop等人进行的一项研究。证明白藜芦醇并未直接构成GLP-1的释放[25]。白藜芦醇可能会通过acti vesti基因(例如SIRT1和FOXO基因)来表达GLP-1在肠道和CNS中的影响[16]。蛋白质的FoxO家族是参与各种生理和病情逻辑过程的转录因子,例如细胞稳态,干细胞维持,癌症,代谢和汽车双耳疾病[26]。因此,迄今为止,白藜芦醇对释放的白藜芦醇的机械性仍然存在争议。
摘要:金属配合物的化学性质在很大程度上取决于与金属中心配位的配体的数量和几何排列。现有的确定配位数或几何形状的方法依赖于准确性和计算成本之间的权衡,这阻碍了它们在大型结构数据集研究中的应用。在此,我们提出了 MetalHawk ( https://github.com/vrettasm/MetalHawk ),这是一种基于机器学习的方法,通过人工神经网络 (ANN) 同时对金属位点的配位数和几何形状进行分类,这些网络使用剑桥结构数据库 (CSD) 和金属蛋白数据库 (MetalPDB) 进行训练。我们证明,CSD 训练的模型可用于对属于最常见配位数和几何形状类别的位点进行分类,对于 CSD 沉积的金属位点,平衡准确度等于 96.51%。我们还发现,CSD 训练模型能够对 MetalPDB 数据库中的生物无机金属位点进行分类,在整个 PDB 数据集上的平衡准确度为 84.29%,在 PDB 验证集中手动审核的位点上的平衡准确度为 91.66%。此外,我们报告的证据表明,CSD 训练模型的输出向量可以被视为金属位点扭曲的代理指标,表明这些可以解释为金属位点结构中存在的细微几何特征的低维表示。