由 J. Carr/CCR 改编,经科罗拉多州洛夫兰市康拉德·鲍尔中学许可。2012 年 4 月 10 日。ASCD 网络研讨会:创建支持社区以实施 CCSS 2012 年 4 月 13 日
宣言的目的历史上,分布式能源资源(DER)是由可以看到和分析逻辑和操作方法的离散组件或功能组件组装的。今天,大部分功能都是按照固件和软件说明的板载计算机来处理的,以实现所需的结果。行业标准(例如IEEE 1547)创建了一组要求,可以通过全国认可的测试实验室来证明,用于该地区EPS。但是,尽管在行业中正在进行努力,但对于EPS来说,对于EPS来说,EPS重要的许多功能对EPS很重要。目前缺乏行业标准来存储储能系统,需要通过对操作手册的详细审查以及经常与制造商进行查询来验证功能。
简介。有机半导体的开发。有机和无机光电技术的比较。有机光子学和电子市场开发。立陶宛有机光电技术的开发。有机光电学中使用的材料。设备的典型多层结构典型的有机半导体。主要的技术:小分子,聚合物。多功能材料。分子玻璃。电荷分离材料。发射器:单线,三重态。分子复合物。非线性光学分子。其他材料。有机层。纯化材料的方法。真空中的蒸发。从解决方案中铸造。获得不溶性层。合金。通过真空蒸发和铸造方法获得多层结构。Langmuir-Blogett技术。自组织层。结构层。寿命和有机层降解的问题。封装。有机共轭分子的特性。分子轨道,轨道杂交。分子电子和振动状态。势能共配置图。分子中的激发过程。环境影响,分子复合物,激发转移过程。fiorster,敏捷能量传递。有机材料和聚合物中激发激发的基本知识。缺陷状态。Frenkel的激子。多元中激子的状态。激子 - 振动相互作用。电荷转移激子。激子北极星和极化。激子运输和放松过程。有机层和晶体中的电荷载体状态。光学和绝热带隙。载体带,载体状态密度。聚合物状态。电荷转移现象。载体迁移率,其温度和电场依赖性。
摘要:对使用NIR-I(700 - 900 nm)和NIR-II(900 - 1700 nm)的光谱,光学通信和医疗应用的近红外(NIR)辐射的兴趣日益增强,这促使人们对新的NIR NIR光源的需求促进了需求。NIR磷光灯转化的发光二极管(PC-LEDS)有望取代传统灯,这主要是由于其高效率和紧凑的设计。由Cr 3+和Cr 4+激活的宽带NIR磷酸盐吸引了重大的研究兴趣,从而在700至1700 nm的范围内发射了。在这项工作中,我们与宽带NIR-I(CR 3+)和NIR-II(CR 4+)发射合成了一系列SC 2(1-x)Ga 2 x O 3:Cr 3+/4+材料(x = 0 - 0.2)。我们通过掺入Ga 3+离子来观察到Cr 3+(约77次)的强度大幅增加。此外,我们的研究表明,CR 3+和Cr 4+离子之间发生了能量转移。配置图显示了SC 2 O 3矩阵中Cr 3+和Cr 4+离子的行为。我们还观察到在20.2 GPA压力下的相变,导致了一个新的未知相,其中Cr 3+发光表现出高对称环境。值得注意的是,本研究介绍了在SC 2(1-x)Ga 2 x O 3中的NIR CR 4+发光的压力诱导的移位:Cr 3+/4+。线性移位在相变之前和之后估计为83±3和61±6 cm -1 /gpa。总的来说,我们的发现阐明了SC 2(1-x)Ga 2 x O 3:Cr 3+/4+材料的合成,发光特性,温度和高压行为。■简介这项研究有助于这些材料在有效的NIR光源和其他光学设备的开发中的理解和潜在应用。