基因选择性转录因子通过与其靶基因调节区域内的特定DNA元件结合(1)。但是,并非完全定义此DNA结合的序列要求。几个参数,例如蛋白质 - 蛋白质相互作用与相邻结合的因素,DNA结构的影响(弯曲等)。),重要的是,结合位点与认知因子的比率确定给定转录因子是否可以有效地与相应的结合位点相互作用。体外和大概也在体内也是如此,对于确定转录因子是否会与其最佳识别序列的变体结合,因此,它的基因调节。在这些考虑因素中提示,我们询问是否存在一种蜂窝机制,该机制是否存在在转录因子活动和可用目标位点的繁琐之间保持平衡。对AP-1家族成员的特征良好转录因子C-Jun进行了实验(2-4)。包含AP-1结合位点的启动子是C-Jun调节的目标。C-Jun的活性受到多种机制的紧密控制,并且对蛋白质的异常调节会导致恶性转化和致癌作用(5)。在这项研究中,我们描述了一种机制,该机制通过改变其磷酸化态的DNA结合活性,取决于细胞中存在的C-Jun结合位点的浓度。这种机制可以用来设置和微调C-Jun与其结合位点的比率。有趣的是,与这种现象有关的磷酸化位点与以前据报道经历信号依赖性去磷酸化相同。
甘露醇稳定剂 Abrysvo RSV 22.5 mg 聚山梨醇酯 80 表面活性剂 Abrysvo RSV 0.08 mg 矿物质盐 调节张力 Abrysvo RSV 1.1 mg 氯化钠 蔗糖稳定剂 Abrysvo RSV 11.3 mg 氨丁三醇稳定剂 Abrysvo RSV 0.11 mg 盐酸氨丁三醇稳定剂 Abrysvo RSV 1.04 mg 硫酸铵 蛋白质净化剂 ActHIB Hib 净化成分 牛酪蛋白培养基营养物 ActHIB Hib 包装说明书中未指定的数量 甲醛灭活剂 ActHIB Hib <0.5 mcg 矿物质盐 调节张力 ActHIB Hib 稀释剂中 0.4% 氯化钠 蔗糖稳定剂 ActHIB Hib 8.5% 2-苯氧乙醇稳定剂 Adacel Tdap 3.3 mg (0.6% v/v)(不作为防腐剂) 磷酸铝佐剂 Adacel Tdap 1.5 mg(0.33 mg 铝) 硫酸铵 蛋白质净化剂 Adacel Tdap 净化成分 牛,酪蛋白氨基酸稳定剂 Adacel Tdap 包装说明书中未指定的数量 二甲基-β-环糊精 培养基营养物 Adacel Tdap 包装说明书中未指定的数量 甲醛灭活剂 Adacel Tdap ≤5 mcg 戊二醛灭活剂 Adacel Tdap <50 ng(残留) 蛋清(卵清蛋白) 残留培养基 Afluria Influenza ≤1 mcg β-丙内酯病毒灭活剂 Afluria Influenza <2.3 ng 氯化钙 培养基营养物 Afluria Influenza 0.5 mcg 氢化可的松 培养基营养物 Afluria Influenza ≤0.56 ng 硫酸新霉素 抗菌剂 Afluria Influenza ≤61.5 ng 磷酸盐缓冲液 缓冲液 Afluria Influenza 20 mcg 磷酸二氢钾 80 mcg 磷酸二氢钠 300 mcg 磷酸二氢钠 多粘菌素 B 抗菌剂 Afluria Influenza ≤10.5 ng 氯化钾缓冲液 Afluria Influenza 20 mcg 矿物质盐 调节张力 Afluria Influenza 4.1 mg 氯化钠 牛磺脱氧胆酸钠 蛋白质净化剂 Afluria Influenza ≤10 ppm(残留) 蔗糖稳定剂 Afluria Influenza <10 mcg 硫柳汞防腐剂 Afluria Influenza 24.5 mcg 汞仅在多剂量小瓶中;单剂量中无 AS01 E 佐剂 AREXVY RSV 包装说明书中未指定的量 胆固醇 脂质 AREXVY RSV 0.125 mg DNA 残留培养基 AREXVY RSV ≤0.80 ng/mg DOPC AS01 E 中的脂质 AREXVY RSV 0.5 mg 宿主细胞 蛋白质 残留培养基 AREXVY RSV ≤2.0% 磷酸盐缓冲液 缓冲液 AREXVY RSV 4.4 mg 氯化钠 0.83 mg 磷酸二氢钾 0.26 mg 磷酸二钾 0.15 mg 无水磷酸二钠 聚山梨醇酯 80 表面活性剂 AREXVY RSV 0.18 mg 盐、矿物质 调节张力 AREXVY RSV 4.4 mg 氯化钠 海藻糖 稳定剂 AREXVY RSV 14.7 mg 氢氧化铝 佐剂 Bexsero 脑膜炎球菌B 1.5 毫克(0.519 毫克铝)组氨酸培养基营养素Bexsero 脑膜炎球菌 B 0.776 毫克卡那霉素抗菌素Bexsero 脑膜炎球菌 B <0.01 微克盐、矿物质调节张力Bexsero 脑膜炎球菌 B 3.125 毫克氯化钠蔗糖稳定剂Bexsero 脑膜炎球菌 B 10 毫克氢氧化铝佐剂增强剂Tdap ≤0.3 毫克铝 牛酪蛋白 培养基 营养物 Boostrix Tdap 包装说明书中未指定量 牛提取物 培养基 营养物 Boostrix Tdap 包装说明书中未指定量 甲醛灭活剂 Boostrix Tdap ≤100 微克(残留) 戊二醛灭活剂 Boostrix Tdap 包装说明书中未指定量 聚山梨醇酯 80 表面活性剂 Boostrix Tdap ≤100 微克(吐温 80) 矿物质盐 调节张力 Boostrix Tdap 4.4 毫克氯化钠 葡萄糖 培养基 营养物 Capvaxive 肺炎球菌 21 包装说明书中未指定量 L-组氨酸 培养基 营养物 Capvaxive 肺炎球菌 21 1.55 毫克 苯酚灭活剂 Capvaxive 肺炎球菌 21 净化成分 聚山梨醇酯 20 表面活性剂Capvaxive 肺炎球菌 21 0.50 mg 盐、矿物质 调节张力 Capvaxive 肺炎球菌 21 4.49 mg 氯化钠 酵母培养基营养物 Capvaxive 肺炎球菌 21 包装说明书中未指定的量 (4-羟基丁基)氮烷二基)双(己烷-6,1-二基)双(2-己基癸酸酯)
甘露醇稳定剂 Abrysvo RSV 22.5 mg 聚山梨醇酯 80 表面活性剂 Abrysvo RSV 0.08 mg 矿物质盐 调节张力 Abrysvo RSV 1.1 mg 氯化钠 蔗糖稳定剂 Abrysvo RSV 11.3 mg 氨丁三醇稳定剂 Abrysvo RSV 0.11 mg 盐酸氨丁三醇稳定剂 Abrysvo RSV 1.04 mg 硫酸铵 蛋白质净化剂 ActHIB Hib 净化成分 牛酪蛋白培养基营养物 ActHIB Hib 包装说明书中未指定的数量 甲醛灭活剂 ActHIB Hib <0.5 mcg 矿物质盐 调节张力 ActHIB Hib 稀释剂中 0.4% 氯化钠 蔗糖稳定剂 ActHIB Hib 8.5% 2-苯氧乙醇稳定剂 Adacel Tdap 3.3 mg (0.6% v/v)(不作为防腐剂) 磷酸铝佐剂 Adacel Tdap 1.5 mg(0.33 mg 铝) 硫酸铵 蛋白质净化剂 Adacel Tdap 净化成分 牛,酪蛋白氨基酸稳定剂 Adacel Tdap 包装说明书中未指定的数量 二甲基-β-环糊精 培养基营养物 Adacel Tdap 包装说明书中未指定的数量 甲醛灭活剂 Adacel Tdap ≤5 mcg 戊二醛灭活剂 Adacel Tdap <50 ng(残留) 蛋清(卵清蛋白) 残留培养基 Afluria Influenza ≤1 mcg β-丙内酯病毒灭活剂 Afluria Influenza <2.3 ng 氯化钙 培养基营养物 Afluria Influenza 0.5 mcg 氢化可的松 培养基营养物 Afluria Influenza ≤0.56 ng 硫酸新霉素 抗菌剂 Afluria Influenza ≤61.5 ng 磷酸盐缓冲液 缓冲液 Afluria Influenza 20 mcg 磷酸二氢钾 80 mcg 磷酸二氢钠 300 mcg 磷酸二氢钠 多粘菌素 B 抗菌剂 Afluria Influenza ≤10.5 ng 氯化钾缓冲液 Afluria Influenza 20 mcg 矿物质盐 调节张力 Afluria Influenza 4.1 mg 氯化钠 牛磺脱氧胆酸钠 蛋白质净化剂 Afluria Influenza ≤10 ppm(残留) 蔗糖稳定剂 Afluria Influenza <10 mcg 硫柳汞防腐剂 Afluria Influenza 24.5 mcg 汞仅在多剂量小瓶中;单剂量中无 AS01 E 佐剂 AREXVY RSV 包装说明书中未指定的量 胆固醇 脂质 AREXVY RSV 0.125 mg DNA 残留培养基 AREXVY RSV ≤0.80 ng/mg DOPC AS01 E 中的脂质 AREXVY RSV 0.5 mg 宿主细胞 蛋白质 残留培养基 AREXVY RSV ≤2.0% 磷酸盐缓冲液 缓冲液 AREXVY RSV 4.4 mg 氯化钠 0.83 mg 磷酸二氢钾 0.26 mg 磷酸二钾 0.15 mg 无水磷酸二钠 聚山梨醇酯 80 表面活性剂 AREXVY RSV 0.18 mg 盐、矿物质 调节张力 AREXVY RSV 4.4 mg 氯化钠 海藻糖 稳定剂 AREXVY RSV 14.7 mg 氢氧化铝 佐剂 Bexsero 脑膜炎球菌B 1.5 毫克(0.519 毫克铝)组氨酸培养基营养素Bexsero 脑膜炎球菌 B 0.776 毫克卡那霉素抗菌素Bexsero 脑膜炎球菌 B <0.01 微克盐、矿物质调节张力Bexsero 脑膜炎球菌 B 3.125 毫克氯化钠蔗糖稳定剂Bexsero 脑膜炎球菌 B 10 毫克氢氧化铝佐剂增强剂Tdap ≤0.3 毫克铝 牛酪蛋白 培养基 营养物 Boostrix Tdap 包装说明书中未指定量 牛提取物 培养基 营养物 Boostrix Tdap 包装说明书中未指定量 甲醛灭活剂 Boostrix Tdap ≤100 微克(残留) 戊二醛灭活剂 Boostrix Tdap 包装说明书中未指定量 聚山梨醇酯 80 表面活性剂 Boostrix Tdap ≤100 微克(吐温 80) 矿物质盐 调节张力 Boostrix Tdap 4.4 毫克氯化钠 葡萄糖 培养基 营养物 Capvaxive 肺炎球菌 21 包装说明书中未指定量 L-组氨酸 培养基 营养物 Capvaxive 肺炎球菌 21 1.55 毫克 苯酚灭活剂 Capvaxive 肺炎球菌 21 净化成分 聚山梨醇酯 20 表面活性剂Capvaxive 肺炎球菌 21 0.50 mg 盐、矿物质 调节张力 Capvaxive 肺炎球菌 21 4.49 mg 氯化钠 酵母培养基营养物 Capvaxive 肺炎球菌 21 包装说明书中未指定的量 (4-羟基丁基)氮烷二基)双(己烷-6,1-二基)双(2-己基癸酸酯)
3。Bao,Y.,Huang,J.-Y. * 2024。 微泡对浸入葡萄番茄的浸润的影响。 食品化学,454,139813。 4。 Arbor,A.J.,Bhatt,P.,Simsek,H.,Brown,P.B.,Huang,J.Y。 * 2024。 生命周期评估基于微藻的废水处理用于虾循环水产养殖系统的环境可行性。 Bioresource Technology,399,130578。 5。 Arbor,A.J.,Chu,Y.-T.,Brown,P.B.,Huang,J.-Y. * 2024。 生命周期评估虾,红蛋白,米蒂纳和奥卡哈吉基的海洋水生生产。 环境管理杂志,353,120208。 6。 Bhatt,P.,Brown,P.B.,Huang,J.-Y. ,Hussain,A.S.,Liu,H.T.,Simsek,H。*2024。 藻类和土著细菌联盟在治疗虾废水中:可持续水产养殖系统资源回收的研究。 环境研究,250,118447。 7。 Aranda-Vega,A.,Bhatt,P.,Huang,J.-Y. ,Brown,P.,Bhasin,A.,Hussain,A.S。,Simsek,H。*2024。 水产养殖中溶解物质的生物降解性和生物利用度:土著细菌,蓝细菌和绿色微藻的性能。 环境污染,345,123468。 8。 Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y. * 2024。 在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。 食品工程杂志,363,111782。 9。 * 2023。 10。Bao,Y.,Huang,J.-Y.* 2024。微泡对浸入葡萄番茄的浸润的影响。食品化学,454,139813。4。Arbor,A.J.,Bhatt,P.,Simsek,H.,Brown,P.B.,Huang,J.Y。 * 2024。 生命周期评估基于微藻的废水处理用于虾循环水产养殖系统的环境可行性。 Bioresource Technology,399,130578。 5。 Arbor,A.J.,Chu,Y.-T.,Brown,P.B.,Huang,J.-Y. * 2024。 生命周期评估虾,红蛋白,米蒂纳和奥卡哈吉基的海洋水生生产。 环境管理杂志,353,120208。 6。 Bhatt,P.,Brown,P.B.,Huang,J.-Y. ,Hussain,A.S.,Liu,H.T.,Simsek,H。*2024。 藻类和土著细菌联盟在治疗虾废水中:可持续水产养殖系统资源回收的研究。 环境研究,250,118447。 7。 Aranda-Vega,A.,Bhatt,P.,Huang,J.-Y. ,Brown,P.,Bhasin,A.,Hussain,A.S。,Simsek,H。*2024。 水产养殖中溶解物质的生物降解性和生物利用度:土著细菌,蓝细菌和绿色微藻的性能。 环境污染,345,123468。 8。 Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y. * 2024。 在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。 食品工程杂志,363,111782。 9。 * 2023。 10。Arbor,A.J.,Bhatt,P.,Simsek,H.,Brown,P.B.,Huang,J.Y。* 2024。生命周期评估基于微藻的废水处理用于虾循环水产养殖系统的环境可行性。Bioresource Technology,399,130578。5。Arbor,A.J.,Chu,Y.-T.,Brown,P.B.,Huang,J.-Y. * 2024。 生命周期评估虾,红蛋白,米蒂纳和奥卡哈吉基的海洋水生生产。 环境管理杂志,353,120208。 6。 Bhatt,P.,Brown,P.B.,Huang,J.-Y. ,Hussain,A.S.,Liu,H.T.,Simsek,H。*2024。 藻类和土著细菌联盟在治疗虾废水中:可持续水产养殖系统资源回收的研究。 环境研究,250,118447。 7。 Aranda-Vega,A.,Bhatt,P.,Huang,J.-Y. ,Brown,P.,Bhasin,A.,Hussain,A.S。,Simsek,H。*2024。 水产养殖中溶解物质的生物降解性和生物利用度:土著细菌,蓝细菌和绿色微藻的性能。 环境污染,345,123468。 8。 Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y. * 2024。 在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。 食品工程杂志,363,111782。 9。 * 2023。 10。Arbor,A.J.,Chu,Y.-T.,Brown,P.B.,Huang,J.-Y.* 2024。生命周期评估虾,红蛋白,米蒂纳和奥卡哈吉基的海洋水生生产。环境管理杂志,353,120208。6。Bhatt,P.,Brown,P.B.,Huang,J.-Y. ,Hussain,A.S.,Liu,H.T.,Simsek,H。*2024。 藻类和土著细菌联盟在治疗虾废水中:可持续水产养殖系统资源回收的研究。 环境研究,250,118447。 7。 Aranda-Vega,A.,Bhatt,P.,Huang,J.-Y. ,Brown,P.,Bhasin,A.,Hussain,A.S。,Simsek,H。*2024。 水产养殖中溶解物质的生物降解性和生物利用度:土著细菌,蓝细菌和绿色微藻的性能。 环境污染,345,123468。 8。 Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y. * 2024。 在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。 食品工程杂志,363,111782。 9。 * 2023。 10。Bhatt,P.,Brown,P.B.,Huang,J.-Y.,Hussain,A.S.,Liu,H.T.,Simsek,H。*2024。藻类和土著细菌联盟在治疗虾废水中:可持续水产养殖系统资源回收的研究。环境研究,250,118447。7。Aranda-Vega,A.,Bhatt,P.,Huang,J.-Y. ,Brown,P.,Bhasin,A.,Hussain,A.S。,Simsek,H。*2024。 水产养殖中溶解物质的生物降解性和生物利用度:土著细菌,蓝细菌和绿色微藻的性能。 环境污染,345,123468。 8。 Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y. * 2024。 在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。 食品工程杂志,363,111782。 9。 * 2023。 10。Aranda-Vega,A.,Bhatt,P.,Huang,J.-Y.,Brown,P.,Bhasin,A.,Hussain,A.S。,Simsek,H。*2024。水产养殖中溶解物质的生物降解性和生物利用度:土著细菌,蓝细菌和绿色微藻的性能。环境污染,345,123468。8。Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y. * 2024。 在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。 食品工程杂志,363,111782。 9。 * 2023。 10。Chen,C.-J.,Tsai,J.-H.,Lee,Y.-C。*,Huang,J.-Y.* 2024。在烹饪过程中腌制的竹芽条及其二氧化硫去除的数学建模。食品工程杂志,363,111782。9。* 2023。10。Salazar Tijerino,M.B.,SanMartín-González,M.F.,Velasquez Domingo,J.A.,Huang,J.-Y. 生命周期评估精酿啤酒在不同尺度上以单位操作为基础进行评估。 可持续性,15,11416。 Pankaj,B.,Huang,J.-Y. ,Brown,P.,Shivaram,K.B.,Yakamercan,E.,Simsek,H。*2023。 使用响应表面方法论对水产养殖废水废水的电化学处理和参数优化。 环境污染,331,121864。 11。 Chung,M.M.S.,A.J.,Huang,J.Y。 * 2023。 微气泡辅助清洁过程,用于超滤系统及其环境性能。 由膜的邀请,13,424。 12。 Chung,M.M.S.,Bao,Y.,Velasquez Domingo,J.A.,Huang,J.Y。 * 2023。 使用微泡会通过油性废水污染的微滤膜清洁。 受到食物和生物产品加工的邀请,138,53-59。 13。 Chu,Y.-T.,Bao,Y.,Huang,J.-Y. ,Kim,H.-J.,Brown,P.B。 * 2023。 补充C解决了可持续海洋水培粮食生产系统中的pH难题。 食物,12,69。 14。 Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Salazar Tijerino,M.B.,SanMartín-González,M.F.,Velasquez Domingo,J.A.,Huang,J.-Y.生命周期评估精酿啤酒在不同尺度上以单位操作为基础进行评估。可持续性,15,11416。Pankaj,B.,Huang,J.-Y. ,Brown,P.,Shivaram,K.B.,Yakamercan,E.,Simsek,H。*2023。 使用响应表面方法论对水产养殖废水废水的电化学处理和参数优化。 环境污染,331,121864。 11。 Chung,M.M.S.,A.J.,Huang,J.Y。 * 2023。 微气泡辅助清洁过程,用于超滤系统及其环境性能。 由膜的邀请,13,424。 12。 Chung,M.M.S.,Bao,Y.,Velasquez Domingo,J.A.,Huang,J.Y。 * 2023。 使用微泡会通过油性废水污染的微滤膜清洁。 受到食物和生物产品加工的邀请,138,53-59。 13。 Chu,Y.-T.,Bao,Y.,Huang,J.-Y. ,Kim,H.-J.,Brown,P.B。 * 2023。 补充C解决了可持续海洋水培粮食生产系统中的pH难题。 食物,12,69。 14。 Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Pankaj,B.,Huang,J.-Y.,Brown,P.,Shivaram,K.B.,Yakamercan,E.,Simsek,H。*2023。使用响应表面方法论对水产养殖废水废水的电化学处理和参数优化。环境污染,331,121864。11。Chung,M.M.S.,A.J.,Huang,J.Y。 * 2023。 微气泡辅助清洁过程,用于超滤系统及其环境性能。 由膜的邀请,13,424。 12。 Chung,M.M.S.,Bao,Y.,Velasquez Domingo,J.A.,Huang,J.Y。 * 2023。 使用微泡会通过油性废水污染的微滤膜清洁。 受到食物和生物产品加工的邀请,138,53-59。 13。 Chu,Y.-T.,Bao,Y.,Huang,J.-Y. ,Kim,H.-J.,Brown,P.B。 * 2023。 补充C解决了可持续海洋水培粮食生产系统中的pH难题。 食物,12,69。 14。 Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Chung,M.M.S.,A.J.,Huang,J.Y。* 2023。微气泡辅助清洁过程,用于超滤系统及其环境性能。由膜的邀请,13,424。12。Chung,M.M.S.,Bao,Y.,Velasquez Domingo,J.A.,Huang,J.Y。 * 2023。 使用微泡会通过油性废水污染的微滤膜清洁。 受到食物和生物产品加工的邀请,138,53-59。 13。 Chu,Y.-T.,Bao,Y.,Huang,J.-Y. ,Kim,H.-J.,Brown,P.B。 * 2023。 补充C解决了可持续海洋水培粮食生产系统中的pH难题。 食物,12,69。 14。 Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Chung,M.M.S.,Bao,Y.,Velasquez Domingo,J.A.,Huang,J.Y。* 2023。使用微泡会通过油性废水污染的微滤膜清洁。受到食物和生物产品加工的邀请,138,53-59。13。Chu,Y.-T.,Bao,Y.,Huang,J.-Y. ,Kim,H.-J.,Brown,P.B。 * 2023。 补充C解决了可持续海洋水培粮食生产系统中的pH难题。 食物,12,69。 14。 Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Chu,Y.-T.,Bao,Y.,Huang,J.-Y.,Kim,H.-J.,Brown,P.B。 * 2023。 补充C解决了可持续海洋水培粮食生产系统中的pH难题。 食物,12,69。 14。 Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。,Kim,H.-J.,Brown,P.B。* 2023。补充C解决了可持续海洋水培粮食生产系统中的pH难题。食物,12,69。14。Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y. * 2022。 从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。 工业生态学杂志,26,2006-2019。 15。 Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Al Eissa,A.,Chen,P.,Brown,P.B.,Huang,J.-Y.* 2022。从生命周期的角度来看,饲料配方和农业系统对虾生产链环境性能的影响。工业生态学杂志,26,2006-2019。15。Huang,J.-Y. *,Jones,O.G.,Zhang,B.Y。 2022。 16。Huang,J.-Y.*,Jones,O.G.,Zhang,B.Y。 2022。 16。*,Jones,O.G.,Zhang,B.Y。2022。16。在巴氏杀菌期间酪蛋白和角叉菜蛋白与乳清的相互作用及其对蛋白质沉积的影响。食物和生物生产加工,135,1-10。Chung,M.M.S.,Tsai,J.-H。; Lu,J.,Padilla Chevez,M.,Huang,J.-Y. * 2022。 微泡辅助清洁,以增强从传热表面清除牛奶沉积物。 ACS可持续化学与工程,10,8380-8387。 17。 Chung,M.M.S.,Bao,Y.,Zhang,B.Y.,Le,T.M.,Huang,J.Y。 * 2022。 食品加工环境可持续性的生命周期评估。 受到食品科学技术年度评论的邀请,13,217-237 18。 Akrama,S.*,Bao,Y.,Butt,M.S.,Shukat,R.,Afzal,A. * 2021。 含有的基于阿拉伯胶和麦芽糊精的微胶囊的制造和表征Chung,M.M.S.,Tsai,J.-H。; Lu,J.,Padilla Chevez,M.,Huang,J.-Y.* 2022。微泡辅助清洁,以增强从传热表面清除牛奶沉积物。ACS可持续化学与工程,10,8380-8387。17。Chung,M.M.S.,Bao,Y.,Zhang,B.Y.,Le,T.M.,Huang,J.Y。 * 2022。 食品加工环境可持续性的生命周期评估。 受到食品科学技术年度评论的邀请,13,217-237 18。 Akrama,S.*,Bao,Y.,Butt,M.S.,Shukat,R.,Afzal,A. * 2021。 含有的基于阿拉伯胶和麦芽糊精的微胶囊的制造和表征Chung,M.M.S.,Bao,Y.,Zhang,B.Y.,Le,T.M.,Huang,J.Y。* 2022。食品加工环境可持续性的生命周期评估。受到食品科学技术年度评论的邀请,13,217-237 18。Akrama,S.*,Bao,Y.,Butt,M.S.,Shukat,R.,Afzal,A.* 2021。含有