在两个半导体之间具有不同类型的掺杂类型的半导体之间的静电仪,是P - N交界处的核心,这是几种电子和光电设备后面的基础,包括校正二极管,光电探测器,光载体 - 诸法索尔细胞以及光 - 发光二氧化碳。1超出了由外延半导体生长制造的传统设备,二维材料的出现(2D材料)引起了人们对范德华P - N交界原型的兴趣。2 - 5虽然这些设备尚未与传统的半导体进行典型应用的效率,但范德华(Van der Waals)具有简化的优势,并且在材料选择方面具有可观的实验性原型。取决于特定c成分的属性,p - n连接
近年来,电气性从根本上改变了汽车行业,并提出了许多技术挑战,包括对更高动力总成效率的需求不断增长。在整个传动系统中的摩擦电阻,例如电动机,还原齿轮盒和差速器,以优化车辆的性能和驾驶范围。高性能聚合物在摩擦学传动系统组合中发挥了不断增强的作用,在各种应用中,变速箱的高性能,耐用性和效率。本文将仔细研究两个苛刻的应用:在传输中,摩擦学优化的推力垫圈和水力推进系统中的高性能密封件。dupont开发了一种新颖的材料,甚至可以承受最具挑战性的摩擦学条件,例如高负载和极高速度的结合。
LRQA Group Limited,其分支机构和子公司及其各自的官员,雇员或代理人在本条款中单独和集体称为“ LRQA”。lrqa不承担任何责任,也不应对任何人的损失,损害或费用依靠本文件或提供的任何损失,损害或费用,除非该人已与相关的LRQA实体签订合同,以提供此信息或建议,在这种情况下,任何责任是根据该合同的条款和条件专有的。发行者:Bikenhill Lane,Bikenhill Lane,Birmingham B37 7ES,英国
聚酰亚胺通常通过两步工艺合成,其中涉及芳香族二酐与芳香族二胺的反应。该过程会形成中间体聚酰胺酸或聚酰胺酸酯前体,通常称为中间体。第二步是将聚酰胺酸进行热或化学酰亚胺化,从而形成具有酰胺键 (CONH) 的最终聚酰胺结构。
1。简介选择性激光烧结(SLS)是一种添加剂制造(AM)技术,它通过使用激光在每个计算机辅助设计(CAD)文件的切片中使用激光在粉末状聚合物材料的床上选择性地融化3D模型(图。1a)。SLS的常用聚合物是多酰胺11和12粉,使用温度范围为150-185°C [1-2]。Recently semi-crystalline PEEK of varied LS-grade powders with a melting temperature (T m ) of 343-370°C, were heated up to 380°C to be manufactured into 3D objects by a more elaborate high temperature laser sintering (HT-LS) machine and process, affording PEEK components with a glass transition temperature (T g ) of 150°C [3-4].然而,与传统处理的材料相比,这些热塑性聚合物构建的3D物体的强度通常很弱,这是因为它们由AM加工产生的固有较高的孔隙率以及在Z方向上缺乏聚合物链间连接。因此,对于250-300°C的热固性聚合物开发激光烧结过程至关重要,对航空应用使用能力。最近,将热固性二甲酰亚胺树脂与热导电碳微气泡混合在一起,以提高其激光可吸收性以成功激光烧结[5]。为了克服树脂的低粘度,标准的RTM370树脂在300°C进一步加热2-3小时,以通过促进链扩展,同时仍保持融化融化性处理性,从而提高粘度,从而避免在树脂内部反应性PEPA端盖进行广泛的交联。Initially we have attempted to print a melt-processable RTM370 thermoset polyimide oligomer powder terminated with reactive phenylethynylphthalic (PEPA) endcaps by laser sintering into a 3D objects [6], but soon realized the viscosity of the material originally developed for resin transfer molding (RTM) was too low, and the laser seemed only melted the resin without固化反应性PEPA端盖,从而导致带有空隙的标本。进一步上演的RTM370能够以LS的完整性进行3D打印样品(图1b)。
摘要:在本文中,我们报告了新型聚酰亚胺(PI)纳米复合物,并用金属氧化物(TIO 2或ZRO 2)纳米颗粒和纳米碳(碳纳米纤维(CNF)或官能化的碳纳米管(CNT碳nanotubes)(CNT f s))。对所使用材料的结构和形态进行了全面研究。对其热和机械性能进行了详尽的研究。与单纤维纳米复合材料相比,我们揭示了纳米成分对PI的许多功能特征的协同作用,包括热稳定性,刚度(玻璃过渡温度下方和高于玻璃过渡温度),产量点和浮动温度。此外,还展示了通过选择纳米填料的正确组合来操纵材料特性的可能性。所获得的结果可以成为具有PI基于PI的工程材料的平台,该工程材料具有量身定制的特征,能够在极端条件下运行。
高频信号传输,低介电常数(D K)和低介电损耗因子(D F)的替代品以取代传统的二氧化硅材料。4 - 6聚酰亚胺(PI)通常被评为合适的候选者,因为其低分子极化性以及出色的热,机械和化学耐药性特征,并且在电信和微电子工业中表现出了理想的前景。7当前,低二型聚合物材料的结构和组成设计主要集中于结构修饰,改进材料制造过程和复合修饰。常规PI的固有介电常数位于约3.5中,但是,通常需要较低的值以最大程度地减少超大尺度集成电路,高频通信天线基板和毫米波雷达的层间介电信号传输的功率耗散和延迟。8 - 11通过减少主链上酰亚胺基团之间的极化,已经研究了许多方法来减少介电常数和PI的介电损失。12 PI聚合物的分子结构在其介电特性中起主要作用。固有偶极矩和
频率选择表面 (FSS) 由周期性排列的一维或二维金属结构组成,由于其频率谐振特性而备受关注。FSS 可以根据其尺寸、形状、厚度和其他参数在特定频率范围内选择性地反射 (带阻) 或透射 (带通) 入射电磁波,这是 FSS 的识别特征。[1] 金属和介电材料结构被广泛用于设计太赫兹 FSS 或滤波器,因为它们具有高机械强度,有助于产生功能化设计。金属 FSS 可以通过反射或吸收电磁干扰来屏蔽,但是,制造所需结构的成本很高,并且正在被碳基材料取代,以获得高频电磁特性,具有合适的成本、重量轻、无腐蚀等特点。[2] 通常,碳基材料以 sp、sp 2 和 sp 3 键合,形成相互连接的碳-碳键的长链,从而产生不同的物理和电性能。 [3] 因此,这类材料可归类为半金属或非电介质材料(如石墨烯、石墨、碳纳米管、碳纳米纤维)[4,5],因此通过在磁场和电场中应用飞秒激光脉冲产生 THz 脉冲,其纳米复合材料可表现出 THz 光跃迁、光电特性和介电特性。[6–11] 由于存在非局域 π 键电子,这些碳基材料表现出优异的 EMI 屏蔽性能。自由移动的电子与电磁波相互作用,导致反射,在共振频率下具有最大回波损耗值。[12] 过多的电磁能量会损坏周围的电路并引起不必要的噪声脉冲。Liang 等人。报道了竹状短碳纤维@Fe3O4@酚醛树脂和蜂窝状短碳纤维@Fe3O4@FeO复合材料作为高性能电磁波吸收材料,在4-18 GHz范围内成功实现了反射损耗-10 dB。[13]然而,在文献中对碳基材料在THz范围内的表征仍然没有很好的解释,关于碳基材料FSS特性的报道很少。最近,一种利用3D打印制造的碳基FSS吸收器
介电封装材料在太阳能电池领域有着广阔的应用前景,但不尽如人意的光管理能力和相对较差的介电性能限制了它们在光伏和微电子器件中的进一步应用。在此,设计了一种界面融合策略来设计MOF(UiO-66-NH 2)与酸酐封端的酰亚胺低聚物(6FDA-TFMB)的界面,并制备了一种具有增强前向散射和稳健孔隙率的新型MOF簇(UFT)。UFT用作双酚A环氧树脂(DGEBA)的光学和介电改性剂,在较低的UFT含量(0.5–1 wt%)下可以制备具有高透光率(> 80%)、可调雾度(45–58%)和优异介电性能的UFT环氧复合材料,这为太阳能电池中具有高效光管理的介电封装系统提供了最佳设计。此外,UFT环氧复合材料还表现出优异的紫外线阻隔、疏水、热和机械性能。这项工作为共价键介导的纳米填料的合成以及用于能源系统、半导体、微电子等的介电封装材料的雾度和介电性能的调节提供了模板。
1 简介 隔离器是一种电子设备,它向控制器传输数字信号,同时还提供电流隔离,为用户界面和低压电路提供安全的电压水平。它们具有广泛的应用,包括工业、汽车、消费和医疗电子产品,每种产品都需要特定的最低隔离水平。隔离的基本形式是由光耦合、电容耦合和磁耦合提供的 [1]。隔离器必须通过多项监管标准才能投放市场。这些标准包括可靠性测试,如耐压和浪涌电压以及高压耐久性 (HVE)。耐压和浪涌电压是相对较快的持续时间测试,但 HVE 可能需要几个月到几年才能完成 [2]。本研究基于对磁耦合隔离器中使用的材料的隔离能力的评估。为了更好地管理隔离器的可靠性测试,最好事先优化组件材料。在这项工作中,我们讨论了加工效应对隔离器中使用的各种材料的影响,并