观测近地环境中的尘埃和碎片是一个具有巨大商业和科学意义的领域,对于最大限度地延长卫星的运行和商业生命周期以及降低日益增多的低地球轨道 (LEO) 宇航员的风险至关重要。为此,监测和评估粒子通量对于航天工业和依赖轨道基础设施数据产品/服务的更广泛的社会经济利益至关重要。我们设计了一种被动式太空尘埃探测器来调查低地球轨道的尘埃环境——轨道尘埃撞击实验 (ODIE)。ODIE 设计用于在低地球轨道部署约 1 年,然后返回地球分析尘埃颗粒产生的撞击特征。该设计强调能够区分与人类太空活动有关的轨道碎片 (OD) 和自然产生的毫米到亚毫米级微流星体 (MM) 群。 ODIE 由多个 Kapton 箔组成,这些箔显示出巨大潜力,可以有效保存撞击粒子的尺寸和化学细节,残留物化学可用于解释来源(OD 与 MM)。LEO 是一个恶劣的环境——原子氧的强烈腐蚀作用会损坏 Kapton 箔——需要使用保护涂层。Kapton 的常见涂层(例如 Al、SiO 2 等)对于后续分析和解释 OD 与 MM 的来源存在问题,因为它们是 MM 或 OD 的常见元素成分,或者 X 射线发射峰与用于区分 MM 与 OD 的元素的峰重叠。因此,我们建议使用钯涂层作为此应用的替代品。在这里,我们报告了钯作为 Kapton 基被动式粉尘探测器的保护涂层在暴露于原子氧和撞击时的性能。当受到撞击时,我们观察到较厚的涂层会受到影响
为了表征有机sem iConductor中的内在电荷传输过程,必须最小化外部效应(例如接触电阻,非理想的污染物和外部污染物)的外在效应的影响。[1–3]半导体介电界面对于电荷传输至关重要,因为陷阱和表面粗糙可以阻止有效的电荷转移。[4,5]虽然表面粗糙度易于表征,例如,使用原子力显微镜(AFM)及其来源很容易识别,但[6]对于电活动陷阱而言,这是高度无琐的。此类陷阱通常与有机场效应晶体管(OFET)中使用的介电的影响有关,因为介电常数和其他内在特性会影响电荷转运。[4,5,7-10]为了减少半导体 - 二元界面处的捕获(例如,水和其他固有或外在陷阱),典型的是,表面是由于使用自组装单层(SAMS)而被钝化的。[11]最近还用本质上惰性的六角硼(H-BN)用作介电,其目标是实现无陷阱界面。[12–14]
摘要:聚酰亚胺(PI)是一类介电聚合物,用于广泛的电子设备和电气工程应用,从低压微电机到高压隔离。由于其出色的热,电气和机械性能,它们得到了很好的赞赏,每个特性都需要根据最终应用来唯一优化。例如,对于高压应用,必须优化最终的聚合物分解场和介电性能,这两者都取决于固化过程和PI的最终物理化学特性。迄今为止的大多数研究都集中在聚合物的一组有限的特性上,并分析了从物理,机械,机械或以电气为中心的观点来固化的效果。本文试图克服这一点,在同一研究中统一所有这些特征,以准确描述治疗温度对PI性质和工业加工量表的普遍影响。本文报告了同类的最广泛研究对治疗温度对聚酰亚胺的物理化学,机械,热和电气特性的影响,该特性是多酰亚胺,特定的聚乙醇硫酸苯二酚-CO-4、4'-氧基二氨基氨基氨基烷(PMDA/ODA)(PMDA/ODA)。不仅要精确地研究了治疗温度的优化,不仅在iMidation(DOI)方面进行了精确研究,而且还考虑了整个物理特性。尤其是,分析阐明了电荷转移复合物(CTC)在这些特性上的关键作用。低场处的电特性表现出可能是由于DOI引起的最终PI特性的增强。结果表明,尽管随着DOI和CTC的形成,热和机械性能都会改善,但电气特性,尤其是在高场面条件下,随着CTC形成的增加,在较高温度下降解时,拮抗行为会增强DOI。相反,在高电场上,电导率结果显示在中等温度下,强调当在这种平衡的情况下进行热进型过程时,高DOI和PI链之间的理想折衷。此平衡允许具有优化电气性能的PIFIM的最高性能,总体而言,可以实现最佳的热和机械性能。
关键词:非光定义聚酰亚胺、固化、C&D Track、CascadeTek 烤箱、互连和 GaAs。摘要 化合物半导体行业使用多种材料来制造用于金属互连的层间电介质薄膜。这些材料包括 BCB、聚酰亚胺和硅电介质。在本文中,我们讨论了在 BAE 系统微电子中心 (MEC) 制造工厂的新加工设备上进行的聚酰亚胺薄膜工艺鉴定。这项工作包括对用于聚酰亚胺涂层的新涂层轨道和用于固化聚酰亚胺涂层薄膜的新固化烤箱的鉴定。引言聚酰亚胺薄膜具有低介电常数、高模量和相对较高的热稳定性、化学稳定性和机械稳定性 1, 2 。这些特性使其成为众多半导体和微电子处理应用的有吸引力的候选者。这些应用包括使用聚酰亚胺薄膜作为倒装芯片封装中的钝化层、印刷电路板的基板、多芯片模块沉积电介质封装中的基板、多层金属互连中的电介质夹层等。3 本文讨论了将聚酰亚胺薄膜用于金属互连,因为其介电常数低,可以降低寄生电容。金属互连将集成电路 (IC) 的各个部分电连接起来。互连结构对于现代 IC 制造至关重要。图 1 显示了典型互连结构的横截面。互连由交替的金属层和电介质层制成。这些层经过图案化,形成连接电路 1、2、4 的各个组件的电通路。
摘要:采用化学酰亚胺化法制备了具有刚性聚合物主链的氟化芳香族聚酰亚胺 (FAPI) 薄膜。聚酰亚胺薄膜表现出优异的力学性能,包括高达 8.4 GPa 的弹性模量和高达 326.7 MPa 的拉伸强度,以及突出的热稳定性,包括玻璃化转变温度 (T g ) 为 346.3–351.6 ◦ C 和空气中的热分解温度 (T d5 ) 为 544.1–612.3 ◦ C,以及在 500 nm 处>81.2% 的高无色透过率。此外,聚酰亚胺薄膜在 10–60 GHz 下表现出稳定的介电常数和低介电损耗,这归因于刚性聚合物主链的紧密堆积限制了电场中偶极子的偏转。还建立了分子动力学模拟来描述分子结构和介电损耗的关系。
* 通讯作者: amine@anl.gov; kemshao@ust.hk 摘要 基于全有机电解质的非水氧化还原液流电池,由土
摘要。湿法蚀刻是大规模生产微电子和纳米电子器件的关键制造步骤。然而,当在蚀刻过程中使用腐蚀性极强的酸(如氢氟酸)时,如果器件包含与该酸不兼容的材料,则可能会发生不良损坏。聚酰亚胺薄膜可用作牺牲/结构层来制造独立或柔性器件。聚酰亚胺在微电子中的重要性在于其相对较低的应力和与标准微加工工艺的兼容性。在这项工作中,展示了一种从硅基板上快速剥离 4 µ m 厚聚酰亚胺薄膜的工艺。薄膜的剥离是使用湿基 HF 酸蚀刻剂进行的。具体而言,研究了 HF 浓度对从基板上剥离聚酰亚胺薄膜所需剥离时间的影响。本研究旨在提供有关使用聚酰亚胺薄膜与 HF 的兼容性的信息,这有助于设计和制造基于聚酰亚胺的器件。
Gomez 7。聚合物和复合材料的计算机辅助设计,D。H. Kaelble 8。工程热塑性塑料:属性和应用,由James M. Margolis编辑9。结构泡沫:采购和设计指南,Bruce C. Wendle 10。建筑中的塑料:丙烯酸和聚碳酸酯指南,拉尔夫·蒙特拉(Ralph Montella)11。金属填充聚合物:属性和应用,由Swapan K. Bhattacharya编辑12.塑料技术手册,Manas Chanda和Salil K. Roy 13。反应Lnotive Molding机制和过程,F。MelvinSweeney 14。实用的热形式:原理和应用,约翰·弗洛里安15。注入和压缩成型基础,由Avraam I. Lsayev编辑16。聚合物混合和挤出技术,Nicholas P. Cherernisinoff 17。高模量聚合物:设计和开发方法,由Anagnostis E,Zachariades和Roger S. Porter编辑。化学植物设计中耐腐蚀的塑料复合材料,John H,
表6。 通过纳米伯雷测定法对化合物31和41(Discoverx kinomescan)和细胞验证的Kinome选择性分析。 除了CLK2和CLK4外,还列出了鉴定为与激素中化合物结合的前10个激酶。完整的数据集在补充材料中可用。 nd =未确定。 示例纳米伯特结合曲线可以在补充图2中看到。 请注意,与上面的化合物2和4相比,使用了不同的示踪剂化合物进行STK10和SLK纳米杆元测量。表6。通过纳米伯雷测定法对化合物31和41(Discoverx kinomescan)和细胞验证的Kinome选择性分析。除了CLK2和CLK4外,还列出了鉴定为与激素中化合物结合的前10个激酶。完整的数据集在补充材料中可用。nd =未确定。示例纳米伯特结合曲线可以在补充图2中看到。请注意,与上面的化合物2和4相比,使用了不同的示踪剂化合物进行STK10和SLK纳米杆元测量。
® Q-MANTIC无色透明聚酰亚胺(CPI)薄膜具有优异的耐温性、耐溶解性、力学性能及优良的透光性能,被广泛应用于航空航天、石油化工、现代微电子与光电子等领域。