相邻芳香核之间的相互作用通常会导致螺旋结构,并由于轨道重叠的变化而影响沿柱状堆栈的电荷载流子传输。4 因此,PAH 中 p 堆积和氢键的充分结合使我们能够在很宽的温度范围内建立所需的液晶结构。PAH 的一个特例是萘嵌苯,它由近稠合萘组成。5 最突出的分子体系是苝四羧基二酰亚胺 (PDI),它根据其取代基和功能团组装成不同的螺旋结构。6 取代基通常以对称方式连接在 PDI 核心的两个酰亚胺位置上,并提供例如分子间氢键和 p 堆积相互作用。对于 PDI 1 螺旋纳米纤维,由于相邻分子的酰胺基团之间的氢键而组装(图 1)。 7 纤维的螺旋节距为几十纳米,这归因于定向氢键。两个酰亚胺位置上具有高空间需求的取代基也用于控制分子堆积。PDI 2 的树枝状基团刺激分子的横向旋转,并根据 PDI 核心和树枝状基元之间柔性间隔物的长度诱导复杂的螺旋柱状组织。螺旋柱可以包含 PDI 四聚体作为基本重复单元,这些四聚体基于每个层中并排的两个分子。8 在另一个
抽象锂离子电池(LIB)在包括运输,电子和太阳能在内的众多主要行业中起着至关重要的作用。虽然使用量和多氟烷基(PFAS)添加剂可以提高性能和寿命,但通过电池制造和回收操作将这些添加剂的偶然释放到环境中可能会对环境,人类健康和财务成果产生负面影响。当前的电池制造和回收废物处理方法并非旨在消除PFA,从而强调了对高级解决方案的需求。超临界水氧化(SCWO)已被证明可以在各种复杂的废物流中破坏PFA,从而使其成为有前途的解决方案。374Water的AirScWo技术用于处理含有HQ-115的解决方案,该解决方案是锂离子电池中商业使用的添加剂。HQ-115,也称为BIS(三氟甲磺酰基)酰亚胺(LITFSI),是一种双氟烷基磺酰亚胺(BIS-FASIS)的一种类型秒。这些结果表明,374Water的AirScWo技术可用于快速破坏基于PFA的LIB添加剂,并可能提高一旦商业化的LIB制造和回收利用的可持续性。
工程应用,因为它们表现出与软组织相容的机械行为。[1–3] 此外,可降解的化学交联网络在降解过程中保持其 3D 结构,因此会随时间均匀地丧失其机械性能。然而,它们在因用户操作、外科手术处理或实施而导致意外损坏或断裂(开裂、切割、拉伸)后无法修复,[4] 也无法重塑以满足外科手术要求或手术技术。因此,自修复网络最近越来越受欢迎。 [4–9] 根据键的性质,人们采用了不同的策略为大分子网络提供自修复特性,这些策略包括动态物理键(例如疏水相互作用、氢键、静电相互作用、金属-配体相互作用、主客体相互作用和π-π堆积)或化学可逆键(例如狄尔斯-阿尔德加合物、亚胺键、二硫键、硼酸酯键和腙键)。此类策略已应用于可降解水凝胶,文献中已报道了大量实例。然而,尽管可降解自修复弹性体在医疗器械方面具有巨大潜力,但报道的此类弹性体仍然很少,尤其是当它们必须与流行的熔融沉积成型 (FDM) 3D 打印兼容时。[10]
感光聚酰亚胺 (PSPI) 作为微电子工业中的绝缘材料引起了广泛关注,并且可以直接进行图案化以简化加工步骤。本文回顾了最近关于 PSPI 的开发工作。在简要介绍之后,描述了典型的 PSPI 配方并与传统方法进行了比较,然后介绍了图案化的主要策略。然后将最近关于 PSPI 的许多报告分为两个主要术语:正性工作和负性工作,并重点介绍了它们的化学性质直至图案形成。除了本综述中提到的 PSPI 的光敏性之外,还讨论了其他重要主题,例如低温酰亚胺化和低介电常数。关键词:感光聚酰亚胺 / 聚酰胺酸 / 感光化合物 / 重氮萘醌 / 光化学放大 / 光酸发生器 / 光碱发生器 / 低温酰亚胺化 /
热塑性树脂,有时称为工程塑料,包括一些聚酯、聚醚酰亚胺、聚酰胺酰亚胺、聚苯硫醚、聚醚醚酮 (PEEK) 和液晶聚合物。它们由长而离散的分子组成,在加工温度下熔化为粘稠液体,通常为 500” 至 700” F (260° 至 3710 C),成型后冷却为无定形、半结晶或结晶固体。结晶度对最终基质性能有很大影响。与热固性树脂的固化过程不同,热塑性塑料的加工是可逆的,并且只需重新加热到加工温度,树脂就可以根据需要形成另一种形状。热塑性塑料虽然在高温强度和化学稳定性方面通常不如热熔胶,但更耐开裂和冲击损伤。然而,值得注意的是,最近开发的高性能热塑性塑料,如具有半结晶微结构的 PEEK,表现出优异的高温强度和耐溶剂性。
本评论文章提供了利用非富勒烯受体(NFAS)的有机太阳能电池(OSC)的摘要,重点是二基吡咯吡咯(DPP),萘二酰亚胺(NDI)和二二酰亚胺 - 二酰亚胺(PDI)以及挑战。它强调了PDI,NDI和DPP的表征,尤其是它们的光学,结构和热性能。本文研究了取代基对NFA的分子和电子特性的影响,包括它们对光学,电,溶解性和分子间相互作用特性的影响。在提高NFA在有机半导体开关中的效率方面的进展,功率转换效率超过13%。还考虑了该领域进步的未来前景。该研究探讨了各种取代基对NDI衍生物(如五氟苯基,二苯基甲基甲基,2-硝基苯基,IPRP-NDI,DPM-NDI,dPM-NDI,NO2-NDI)等NDI衍生物的分子结构,光伏性能的影响。这些取代基会影响NDI衍生物的电导率,电子迁移率,氧化还原活性和聚集行为。评论强调了调整NFA中分子和电子特性的重要性,重点是PDI及其衍生物的核心结构。在各种位置(包括海湾和酰亚胺位点)的不同取代基会影响溶解度,聚集趋势,能级,电荷转移和分子堆积。基于DPP的NFA的光伏特性突出显示,达到了高达13%的功率转换效率。提供了详细说明各种DPP衍生物的表,展示了它们独特的吸收特性,PCE和电子迁移率。Hammett的研究被提及证明了电子撤回组对光伏效率的有利影响。本文还讨论了优化固态超分子相互作用中电荷转运和分子形状的重要性。BT与NFA的融合在减少带隙和增强分子内电荷转移方面的潜力进行了检查,从而改善了光伏性能。对这些衍生物的有条理研究被提倡以推进分子体系结构。
可控的高区域选择性直接 CH 芳基化是人们非常希望实现的,但这仍然是一个巨大的挑战。在此,我们开发了一种简便的区域选择性直接 CH 芳基化方法,用于高效构建各种基于对称二噻吩并邻苯二甲酰亚胺的 π 共轭分子。所得方法适用于各种基质,从富电子单元到具有大空间端基的缺电子单元。已证实芳基卤化物能够通过直接 CH 芳基化与二噻吩并邻苯二甲酰亚胺 (DTI) 偶联,表现出高区域选择性。已证明,通过改变 DTI 核心上的功能端基可以微调发射颜色以覆盖大部分可见光谱。结果提出了一种简便的高选择性直接 CH 芳基化策略,为高效构建 π 共轭分子以供各种潜在的光电应用开辟了前景。
丙烯腈丁二烯苯乙烯。丙烯腈/丁二烯/丙烯酸酯。丙烯腈/氯化聚乙烯/苯乙烯。丙烯腈/乙二烯 - 丙烯 - 二烯/苯乙烯。丙烯腈/甲基丙烯酸甲酯。丙烯腈/苯乙烯/丙烯酸酯。醋酸纤维素。乙酸纤维素丁酸酯。丙酸纤维素丙酸酯。脆性甲醛。羧甲基纤维素。硝酸纤维素。丙酸纤维素。三乙酸纤维素。乙基纤维素。乙烯丙烯酸乙烯酸乙烯酸酯。 乙烯/甲基丙烯酸。 环氧或环氧树脂。 乙烯/丙烯。 乙烯/丙烯/二烯。 乙烯/四氟乙烯。 乙烯乙酸乙酯。 乙烯/乙烯基醇。 perfluoro(乙烯/丙烯):四氟乙烯烯丙基二氟丙烯。 呋喃甲醛。 甲基丙烯酸酯/丁二烯/苯乙烯。 甲基纤维素。 三聚氰胺 - 甲醛。 三聚氰胺 - 苯酚 - 甲醛。 聚酰胺。 聚酰胺酰亚胺聚丙烯硝基烯。 聚酯氨基烷烷。 聚丁烯-L。聚丁烯三乙酸酯。 聚碳酸酯。 多氯二甲基。 邻苯二甲酸酯。 聚乙烯。 聚醚块酰胺。 聚醚酮。 聚醚酰亚胺。 聚乙烯氧化物。 聚醚硫。 聚对苯二甲酸酯。 聚醚硫。 聚醚聚氨酯。 苯酚甲醛。乙烯丙烯酸乙烯酸乙烯酸酯。乙烯/甲基丙烯酸。环氧或环氧树脂。乙烯/丙烯。乙烯/丙烯/二烯。乙烯/四氟乙烯。乙烯乙酸乙酯。乙烯/乙烯基醇。perfluoro(乙烯/丙烯):四氟乙烯烯丙基二氟丙烯。呋喃甲醛。甲基丙烯酸酯/丁二烯/苯乙烯。甲基纤维素。三聚氰胺 - 甲醛。三聚氰胺 - 苯酚 - 甲醛。聚酰胺。聚酰胺酰亚胺聚丙烯硝基烯。聚酯氨基烷烷。聚丁烯-L。聚丁烯三乙酸酯。聚碳酸酯。多氯二甲基。邻苯二甲酸酯。聚乙烯。聚醚块酰胺。聚醚酮。聚醚酰亚胺。聚乙烯氧化物。 聚醚硫。 聚对苯二甲酸酯。 聚醚硫。 聚醚聚氨酯。 苯酚甲醛。聚乙烯氧化物。聚醚硫。聚对苯二甲酸酯。聚醚硫。聚醚聚氨酯。苯酚甲醛。全氟烷氧基烷烃。聚酰亚胺。 甲基丙烯酸甲酯。聚酰亚胺。甲基丙烯酸甲酯。
原理和解释 蛋黄酱、类似蛋黄酱的熟淀粉基调料和可倒出的调料是可用的沙拉酱类型。沙拉酱中的微生物来自生产设备的成分和空气。导致沙拉酱变质的微生物群似乎非常有限,由少数乳酸杆菌、酿酒酵母和接合酵母组成。APHA (1) 推荐的改良 MRS 琼脂(乳酸杆菌异型筛选琼脂)用于从沙拉酱中分离和培养乳酸杆菌种(2)。改良 MRS 琼脂是 deMan 等人的 MRS 培养基的改良版(3)。蛋白胨和葡萄糖提供乳酸杆菌生长所必需的氮、碳和其他元素。聚山梨醇酯 80 是一种油酸酯混合物,可提供乳酸杆菌所需的脂肪酸。柠檬酸铵、乙酸钠、2-苯乙醇和环己酰亚胺可抑制革兰氏阴性菌、霉菌和某些革兰氏阳性菌。某些酵母菌也因环己酰亚胺的存在而受到抑制。溴甲酚绿是 pH 指示剂,在酸性条件下,颜色会从绿色变为黄色。