® Q-MANTIC MT导热基材聚酰亚胺薄膜是一种具有高导热性的聚酰亚胺薄膜,其导热性能使其非常适合用于印刷电路板等电子组件的热量控制和管理,应用于高密度、高速运行的微电子系统,可有效解决电路过热、元器件及集成电路稳定性等问题。
尽管铯铅卤化钙钛矿 (CsPbX 3 ,X = Cl、Br 或 I) 纳米晶体 (PNC) 因其出色的光学和传输特性而迅速发展用于多种光电应用,但它们的结构稳定性低,尤其是在环境条件下,限制了它们的设备制造和商业化。在这项工作中,我们开发了一种新方法来保护这些纳米晶体的表面,从而提高了化学稳定性和光学性能。该方法基于将 CsPbX 3 NC 封装到具有内在微孔的聚酰亚胺 (PIM-PI) 中,4,4 ′-(六氟异丙基亚甲基)二邻苯二甲酸酐与 2,4,6-三甲基-间苯二胺 (6FDA- TrMPD) 发生反应。 6FDA-TrMPD 作为保护层可以有效地将 NC 与空气环境隔离,从而提高其光学和光致发光稳定性。更具体地说,比较用聚合物处理的 NC 与 168 小时后的合成纳米晶体,我们观察到聚合物处理前后 NC 的 PL 强度分别下降了 70% 和 20%。此外,含有聚合物的 PNC 薄膜比合成的纳米晶体显示出更长的激发态寿命,表明处理过的 PNC 中的表面陷阱态显著降低。化学和空气稳定性以及光学行为的增强将进一步提高 CsPbBr 3 PNC 的性能,从而产生有前景的光学器件并为其大规模生产和实施铺平道路。
提出了以直接制造方法制备的激光诱导的多孔石墨烯(LIG),并还探索了其在可伸缩应变传感器中的应用以检测施加的应变。与在PI膜上通过激光涂鸦制备的胶片相比,在聚酰亚胺/聚二甲基硅氧烷(PI/PDMS)复合材料上表现出天然高的可伸缩性(超过30%)。带有LIG的PI/PDMS复合材料在PDM中显示出具有不同PI颗粒浓度的可调机械性能和电子性能。相对于拉伸应变,制备的LIG电阻的良好环状稳定性和几乎线性响应提供了其访问可穿戴电子产品的访问。为了提高PDMS/PI复合拉伸性,我们设计并优化了基里加米(Kirigami)启发的应变传感器,并在顶部表面上lig,从而大大增加了对应用应变的线性响应中的最大应变值从3%到79%。
摘要:我们对聚酰亚胺纤维上的CO 2激光诱导的电导率进行了激光参数研究。发现诱导的电导率主要发生在扫描线的中心,而不是在整个线宽度上均匀地发生。Microraman检查表明,电导率主要是由于激光照射线中心诱导的石墨烯结构的多层(4-5)的结果。线中心的石墨烯形态和纳米级纤维结构一起以薄壁多孔结构的形式出现。具有每单位长度和激光功率的能量剂量,这种电导率的表面修饰与激光脉冲频率无关,但取决于平均激光功率。可以通过在高功率水平上对激光束进行一次激光束的扫描来实现高电导率。为了达到高电导率,以低功率使用激光,但要以较慢的扫描速度或进行多次扫描来补偿它是有效或有效的。当10毫米扫描长度上的电阻从几百欧姆降低到30欧姆,当单位长度的能量剂量从0.16 j/mm增加到1.0 j/mm,即从5.0 w增加到5.0 w到24 w,在24 W上增加了3.44×10 w/cm 2 2 s cm 2 2 k. 16.54 w/cm的相应功率,一次通行证扫描。相比之下,以超过22.5 mm/s的速度以低于5 W的功率导致非导电开路。
重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/
聚酰亚胺ber具有高强度和模量和较高的放射性耐药性,1使其可以用作航天器和火箭的轻质电缆夹克,以及用于空间应用的ber-ber强化复合材料。由于空间中使用的材料可能会受到大量的高能辐射,因此必须评估聚酰亚胺BER对高能辐射的响应很重要。在几年内实施了大量使用聚酰亚胺的空间实验。研究了Kapton对3 MeV质子辐射的辐射敏感性,结果表明,在放射溶解时,分解,断裂应激和聚合物的断裂能显着降低。此外,断裂时的伸长率与用相同剂量的2 meV电子照射诱导的伸长级相似。2电子,质子或两个合并的辐照都诱导的键断裂和聚酰亚胺分子的交联,而质子辐射可以比电子辐照更容易打破PI键,然后导致在样品表面积上形成石墨样结构。3质子辐照增加了初始摩擦系数,并降低了聚酰胺的稳定摩擦系数。4辐照PI的磨损速率下降了:电子照射>质子辐照>联合照射。5质子照射还可以控制聚酰亚胺的折射率。折射
I. 引言 经认证可用于太空的材料具有特殊性能(例如重量轻、抗电离辐射、多功能能力、自愈能力和出色的热稳定性),使得它们可以在电离辐射、极端温度、微陨石和深真空等环境中生存。许多太空应用需要在材料表面涂上涂层以保护材料或改变其性质。用于航天器的材料及其涂层都必须易于使用、排气性低且在太空环境中稳定。然而,尽管具有独特的特性,但太空对于航天器上使用的材料(尤其是其外表面)来说是一个恶劣的环境。由于紫外线和粒子损伤等不同的外部因素,大多数这些材料都会出现一定程度的退化。航天器设计的关键方面之一是热控制系统,其功能是将航天器系统的温度保持在其工作范围内。遥远行星际空间中航天器某一区域的绝对温度
相邻芳香核之间的相互作用通常会导致螺旋结构,并由于轨道重叠的变化而影响沿柱状堆栈的电荷载流子传输。4 因此,PAH 中 p 堆积和氢键的充分结合使我们能够在很宽的温度范围内建立所需的液晶结构。PAH 的一个特例是萘嵌苯,它由近稠合萘组成。5 最突出的分子体系是苝四羧基二酰亚胺 (PDI),它根据其取代基和功能团组装成不同的螺旋结构。6 取代基通常以对称方式连接在 PDI 核心的两个酰亚胺位置上,并提供例如分子间氢键和 p 堆积相互作用。对于 PDI 1 螺旋纳米纤维,由于相邻分子的酰胺基团之间的氢键而组装(图 1)。 7 纤维的螺旋节距为几十纳米,这归因于定向氢键。两个酰亚胺位置上具有高空间需求的取代基也用于控制分子堆积。PDI 2 的树枝状基团刺激分子的横向旋转,并根据 PDI 核心和树枝状基元之间柔性间隔物的长度诱导复杂的螺旋柱状组织。螺旋柱可以包含 PDI 四聚体作为基本重复单元,这些四聚体基于每个层中并排的两个分子。8 在另一个
用于高频应用的具有光敏性的低 Df 聚酰亚胺 Hitoshi Araki *、Yohei Kiuchi、Akira Shimada、Hisashi Ogasawara、Masaya Jukei 和 Masao Tomikawa 东丽工业公司电子与成像材料研究实验室,3-1-2 Sonoyama,大津,滋贺 520-0842,日本 *hitoshi.araki.u8@mail.toray 我们研究了聚酰亚胺链的分子运动和极性,开发出了新型低介电常数 (Dk) 和耗散因数 (Df) 聚酰亚胺。我们发现 10-100 GHz 时的 Df 对应于 -150 至 -50 ℃ 时的分子迁移率。为了降低高频时的介电损耗 (=Df),限制低温下的分子运动非常重要。此外,减少聚酰亚胺链中的极性和柔性单元对于获得低 Dk 和 Df 的聚酰亚胺也很重要。我们利用这些知识开发了用于 RDL 的低介电损耗聚酰亚胺。结果,我们获得了新型聚酰亚胺的损耗角正切为 0.002 和介电常数为 2.7。这些聚酰亚胺可以通过正性光刻胶显影的碱性湿法蚀刻和紫外激光烧蚀法进行图案化。我们还通过混合光活性剂开发了光可定义的低损耗角正切聚酰亚胺。与传统的感光聚酰亚胺相比,新型低 Df 聚酰亚胺的微带线插入损耗更低。这些低介电损耗聚酰亚胺适用于 FO-WLP 绝缘体、中介层和其他微电子射频应用。 关键词:聚酰亚胺,低 Dk 和 Df,高频,图案化,低插入损耗 1. 简介 近年来,使用更高频率的 5G 通信技术正在不断推进,以实现高速大容量通信 [1]。此外,用于汽车防撞系统的毫米波雷达将使用超过 60 GHz 的频率 [2]。扇出型晶圆级封装 (FO- WLP) 因其封装尺寸小、制造成本低而备受半导体封装关注。高频 FO-WLP 中的再分布层 (RDL) 需要具有低介电常数 (Dk) 和耗散因数 (Df) 的绝缘体材料 [3]。特别是,采用扇出技术的封装天线 (AiP) 是 5G 时代的关键技术之一。聚四氟乙烯和液晶聚合物被称为低介电常数、低介电损耗材料。然而,这些材料在粘附性和精细图案的图案化性方面存在困难。用于 FO-WLP 再分布层的光电 BCB 介电常数低