肺癌是死亡率最高的恶性肿瘤,而肺腺癌(LUAD)占所有肺癌的40%(1)。在亚洲,表皮生长因子受体(EGFR)是LUAD最常见的驱动突变,发生率为55%(2-4),其中EGFR激活突变在全球占17.4%,在中国占37.3%(5)。表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI)目前是EGFR突变LUAD患者的标准一线治疗方案(6)。尽管使用EGFR-TKI已为晚期EGFR突变型NSCLC患者带来显著的临床获益和前所未有的生存率提高(7-10),但不可避免地会产生获得性耐药。继发性EGFR突变,包括EGFR-T790M突变和EGFR结构域内的其他突变、MAPK、PI3K和细胞周期基因的突变以及EGFR或其他致癌基因如MET的扩增,导致LUAD细胞获得性EGFR-TKI耐药(11-13)。但有些患者在缺乏已知耐药机制的情况下获得了EGFR-TKI耐药。因此,内在性EGFR-TKI耐药是临床上的一个挑战。据报道,大约20%-30%的EGFR突变型LUAD对EGFR-TKI具有内在性耐药(14)。因此,如何克服这些获得性和内在性的EGFR-TKI耐药一直是临床关注的焦点。
唾液酸是九种碳糖,经常在脊椎动物细胞中的细胞表面以及某些类型的无脊椎动物和细菌的细胞中限制胶囊。唾液酸的九个碳主链可以在自然界中进行广泛的酶促修饰,并在C-4/7/8/9处尤其是在C-4/7/8/9处进行O-乙酰化。近年来,o-乙酰化的唾液酸的检测和分析已经采用了乳酸特异性(SOATS)和O-乙酰基酯酶(SIAES),分别鉴定并在哺乳动物细胞中添加和表征盐酸 - 乙酰基酯酶(SOATS)和O-乙酰酯酶(SIAES)(SIAES)(SIAES)(SIAES)(SIAES)(siaES),分别鉴定出和去除O-乙酰基组。这些进步现在使我们能够更完整地了解多样的O-乙酰化唾液酸的生物合成途径,以驱动遗传和生物化学模型细胞系和生物体的产生,并具有o-乙酰化的唾液酸表达的表达,以改变其角色,以使其在孔隙蛋白中脱离孔隙蛋白的良好性,并伴随着孔隙蛋白的良好性,并具有良好的发现,并具有良好的发现,并具有良好的发现,并具有良好的发现,并逐渐识别。此外,越来越多的研究将唾液酸O-乙酰化与癌症,自身免疫性和感染相关联,这为开发选择性探针和Soats and Siaes的抑制剂提供了理由。在这里,我们讨论了O-乙酰化唾液酸的生物合成和生物学功能的当前见解,并回顾了将这种修饰与疾病联系起来的证据。此外,我们讨论了针对不自然的O-乙酰化唾液酸的设计,合成和潜在应用的新兴策略,以及肥皂和SIAES的抑制剂,这些策略可能可以实现这种多功能唾液酸的治疗靶向。
摘要:微管蛋白去乙酰化酶 sirtuin 2 (Sirt2) 和组蛋白去乙酰化酶 6 (HDAC6) 的失调与癌症和神经退行性疾病的发病机制有关,因此这两种酶是药物干预的有希望的靶点。在此,我们报告了首创的双重 Sirt2/ HDAC6 抑制剂的设计、合成和生物学表征,作为双重抑制微管蛋白去乙酰化的分子工具。使用生化体外测定和基于细胞的靶标参与方法,我们确定 Mz325 ( 33 ) 是两种靶标酶的强效选择性抑制剂。Sirt2 和 HDAC6 与 33 的构造块复合物的 X 射线晶体结构进一步证实了对两个靶标的抑制。在卵巢癌细胞中,与单独或联合使用未结合的 Sirt2 和 HDAC6 抑制剂相比, 33 对细胞活力的影响增强。因此,我们的双重 Sirt2/HDAC6 抑制剂是研究微管蛋白去乙酰化双重抑制的后果和治疗潜力的重要新工具。■ 简介
简介:随着预期寿命的增加,老龄人口和痴呆症患病率也在增加。生长素释放肽是空间记忆和认知的关键调节剂。肠道微生物群可能会影响未酰化生长素释放肽 (UAG) 和酰化生长素释放肽 (AG) 的循环水平。因此,我们探索了老年痴呆症患者的肠道微生物群、AG 和认知健康之间的潜在关联。方法:招募了 40 名痴呆症患者和 40 名对照者。对 18 个样本进行使用 16S rRNA 测序的粪便微生物组分析。采用混合方法进行可靠的解释。结果:痴呆症患者的血清 AG 和 AG/UAG 比率增加。随着痴呆症患者中 AG 的增加,物种丰富度显著下降。长双歧杆菌、双形真杆菌、普拉梭菌、瘤胃乳杆菌和普氏菌导致了β多样性的显著差异。Blautia obeum 与简易精神状态检查 (MMSE) 相关,普拉梭菌与蒙特利尔认知评估 (MoCA) 量表相关。讨论:这项初步研究表明 AG、肠道微生物组和认知评分之间存在复杂的相互作用。AG 升高与痴呆和肠道菌群失调相对应,与肠脑轴错综复杂地相互联系。循环 AG 和相关的肠道微生物组可能是痴呆症的假定生物标志物。
组蛋白去乙酰化酶抑制剂已被研究作为癌症和其他疾病的潜在治疗剂。已知 HDI 可促进组蛋白乙酰化,从而导致开放染色质构象并通常增加基因表达。在之前的研究中,我们报告了一组基因,特别是那些由超级增强子调控的基因,可以被 HDAC 抑制剂拉格唑抑制。为了阐明拉格唑抑制基因的分子机制,我们进行了转座酶可及染色质测序、ChIP-seq 和 RNA-seq 研究。我们的研究结果表明,虽然拉格唑治疗通常会增强染色质的可及性,但它会选择性地降低一组超级增强子区域的可及性。这些基因组区域在拉格唑存在下表现出最显著的变化,富含 SP1、BRD4、CTCF 和 YY1 的转录因子结合基序。 ChIP-seq 分析证实 BRD4 和 SP1 在染色质上各自位点的结合减少,特别是在调节基因(如 ID1、c-Myc 和 MCM)的超级增强子上。拉格唑通过抑制 DNA 复制、RNA 加工和细胞周期进程发挥作用,部分是通过抑制 SP1 表达来实现的。shRNA 消耗 SP1 可模拟拉格唑的几种关键生物学效应并增加细胞对该药物的敏感性。针对细胞周期调控,我们证明拉格唑通过干扰中期染色体排列来破坏 G/M 转换,这种表型在 SP1 消耗时也观察到。我们的结果表明,拉格唑通过抑制超级增强子上的 BRD4 和 SP1 发挥其生长抑制作用,导致细胞抑制反应和有丝分裂功能障碍。
建立了由8个组蛋白乙酰化相关基因组成的STAD预后模型,根据中位风险评分将STAD患者分为高危组和低危组,高危组的预后较低危组差。两组在体细胞突变、免疫亚型、临床病理特征、肿瘤微环境、免疫细胞浸润和免疫活性、免疫治疗预测和药物敏感性等方面存在明显差异。基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析结果表明,两组中的差异表达基因(DEG)参与了与癌症相关的过程和途径。细胞分析表明,DCLK1是胃癌的促癌因子,可促进胃癌细胞对奥沙利铂产生耐药性。
先天免疫是抵御病毒的第一道防线,其中线粒体在诱导干扰素 (IFN) 反应中起着重要作用。BHRF1 是一种在 Epstein-Barr 病毒再激活过程中表达的多功能病毒蛋白,它会调节线粒体动力学并破坏 IFN 信号通路。线粒体是一种可移动的细胞器,借助细胞骨架,特别是微管 (MT) 网络,它可以在细胞质中移动。微管会经历各种翻译后修饰,其中包括微管蛋白乙酰化。在本研究中,我们证明 BHRF1 会诱导微管过度乙酰化以逃避先天免疫。事实上,BHRF1 的表达会诱导缩短的线粒体聚集在细胞核旁边。这种“线粒体聚集体”围绕着丝粒组织,其形成依赖于微管。我们还观察到 α-微管蛋白乙酰转移酶 ATAT1 与 BHRF1 相互作用。使用 ATAT1 敲低或不可乙酰化的 α-微管蛋白突变体,我们证明了这种高乙酰化对于线粒体聚集体的形成是必需的。在 EBV 重新激活期间也观察到了类似的结果。我们研究了导致线粒体聚集的机制,并确定了运动蛋白是线粒体聚集所需的马达。最后,我们证明了 BHRF1 需要 MT 高乙酰化来阻止 IFN 反应的诱导。此外,MT 高乙酰化的丧失会阻止自噬体定位到靠近线粒体聚集体的位置,从而阻碍 BHRF1 启动线粒体自噬,而线粒体自噬对于抑制信号通路至关重要。因此,我们的结果揭示了 MT 网络及其乙酰化水平在诱导亲病毒线粒体自噬中的作用。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2024年9月7日发布。 https://doi.org/10.1101/2024.09.04.611121 doi:Biorxiv Preprint
摘要背景:乳腺癌是影响全球众多女性的普遍公共卫生问题,与棕榈酰化(一种翻译后蛋白质修饰)有关。尽管人们对棕榈酰化越来越关注,但其对乳腺癌预后的具体影响仍不清楚。这项工作旨在确定与乳腺癌棕榈酰化相关的预后因素,并评估其在预测化疗和免疫疗法反应方面的有效性。方法:我们利用“limma”包分析乳腺癌和正常组织之间棕榈酰化相关基因的差异表达。使用“WGCNA”包识别中心基因。使用最小绝对收缩和选择算子 (LASSO) Cox 回归分析,我们确定了与棕榈酰化相关的预后特征,并使用“regplot”包开发了预后列线图。使用免疫表型评分 (IPS) 和“pRophetic”包评估模型对化疗和免疫疗法反应的预测值。结果:我们鉴定出211个与棕榈酰化相关的差异表达基因,其中44个显示出预后潜力。随后,我们建立了一个包含11个棕榈酰化相关基因的预测模型。根据中位风险评分将患者分为高风险组和低风险组。研究结果显示,高风险组个体的生存率较低,而低风险组个体的免疫细胞滤过率增加,对化疗和免疫治疗的反应性改善。此外,我们还建立了BC-棕榈酰化工具网站。结论:本研究开发了第一个基于机器学习的棕榈酰化相关基因预测模型并创建了相应的网站,为临床医生提供了改善患者预后的宝贵工具。
大规模量子计算的最有前途的方法之一使用了基于许多约瑟夫森连接的设备。,即使在今天,有关单个连接点的开放问题仍然尚未解决,例如对量子相变的详细理解,约瑟夫森连接到环境的耦合或如何改善超导量子的相干性。在这里,我们设计并建立了连接到约瑟夫森连接处的芯片储层的设计和建造,该芯片连接起了一个有效的钢计,用于检测在非均衡性下,即有偏见的条件下的约瑟夫森辐射。验证仪转换A.C. Josephson电流在微波频率下,高达约100 GHz的温度升高,该温度升高。温度法。基于现实参数值的电路模型同时捕获当前 - 电压特性和测量功率。本实验证明了微波光子的有效,宽,热检测方案,并提供了超出标准电导测量值之外的约瑟夫森动力学的敏感检测器。