摘要使用可用证据的叙述性综述评估了2型糖尿病(T2DM)(T2DM)(T2DM)(T2DM)(T2DM)(T2DM)(T2DM)的风险因素之间的关系。GGT循环水平较高与2型糖尿病的风险增加有关,这表明GGT是T2DM的风险预测因子。2型糖尿病的发生率及其与GGT升高的关联可以通过细胞中的氧化应激,然后是亚临床炎症和脂肪肝的氧化应激,从而导致胰岛素分泌和胰岛素抵抗受损。BMI和GGT之间很明显,其中肝脂肪变性和胰岛素抵抗被认为是中间连接特征。关键字:γ-谷氨酰转移酶,2型糖尿病,体重指数
人类遗传疾病通常是由复合杂合性突变引起的,其中突变基因的每个等位基因都具有不同的遗传病变。但是,由于缺乏适当的模型,对此类突变的研究受到阻碍。在这里,我们描述了在强制性酶二聚体中的复合异伴变体的动力学模型,该变体在一个单体中包含一个突变,而第二个单体中的另一个突变中包含一个突变。该酶由人YarS2编码用于Mito-trosyl-tRNA合成酶(MT-Tyrrs),该酶是氨基化酪氨酸到MT-TRNA Tyr的氨基酰基。yarS2是MT-氨基酰基-TRNA合成酶的基因的成员,其中致病性突变的疾病严重程度与酶活性之间的相关性有限。我们在YARS2中识别一对与新生儿死亡有关的化合物杂合变体。我们表明,虽然每个突变在MT-TYRR的同型二聚体中导致氨基酰化的最小缺陷,但反式跨性别的两个突变会协同降低酶活性,从而更大。因此,这种动力学模型准确地概括了疾病的严重程度,强调了其研究YARS2突变的效用及其对具有复合杂合突变的其他疾病的泛化潜力。
结核病是一个在全球范围内的问题,由于抗药性不断发展,对经济造成了负担。需要开发新的抗结核药物,并且可以通过抑制可毒靶标实现。结核分枝杆菌烯酰酰基载体蛋白(ACP)还原酶(INHA)是结核分枝杆菌存活的重要酶。在这项研究中,我们报告了可以通过抑制该酶来治疗结核病的伊萨蛋白衍生物的合成。化合物4L显示IC 50值(0.6±0.94 µm)类似于异念珠菌,但对MDR和XDR结核分枝杆菌菌株(MIC分别为0.48和3.9 µg/ mL)也有效。分子对接研究表明,这种化合物通过在活性部位使用相对未开发的疏水口袋结合。分子动力学用于研究和支持4L复合物与靶酶的稳定性。这项研究为新型抗结核药物的设计和合成铺平了道路。
◥ 阿司匹林和二十碳五烯酸 (EPA) 可降低结肠直肠腺瘤性息肉风险并影响氧化脂质的合成,包括前列腺素 E2 。我们在随机 2 2 析因 SEAFOOD 试验中研究了氧化脂质代谢基因中的 35 个 SNP,例如环氧合酶 ( PTGS ) 和脂氧合酶 ( A LOX ),以及已经与阿司匹林降低结肠直肠癌风险相关的 7 个 SNP(例如 TP53;rs104522),是否改变了阿司匹林和 EPA 对结肠直肠息肉复发的影响。通过对 SNP 基因型结肠直肠息肉风险进行负二项式和泊松回归分析,将治疗效果报告为发病率比 (IRR) 和 95% 置信区间 (CI)。统计显著性通过调整 P 值和 q 值以错误发现率表示。542 名(共 707 名)试验参与者同时具有基因型和结肠镜检查结果数据。与未服用阿司匹林的人相比,服用阿司匹林的人结肠息肉风险降低仅限于 rs4837960(PTGS1)常见纯合子[IRR,0.69;95% 置信区间 (CI),0.53 – 0.90);q = 0.06]、rs2745557(PTGS2)复合杂合子稀有纯合子
,Erwin Fraiponts 8,Gary Tresadern 4,Peter W. M. Roevens 9,Harrie J. M. Gijsen 3和Bart de Strooper 1,10 *,来自1 Neuroscience,Ku Leuven,Leuven,Leuven,Belgium,Belgium; 2脑和疾病研究中心,VIB,鲁汶,比利时; 3发现化学的拆分和4计算化学的拆分,詹森研究与开发,詹森制药(Janssen Pharmaceutica NV),比利时贝尔斯(Beerse); 5个鼻虫生物发现,西班牙巴塞罗那; 6西班牙巴塞罗那巴塞罗那超级计算中心的生命科学系6; 7西班牙巴塞罗那的Catalana de Recerca I EstudisAvançats(ICREA); 8查尔斯河实验室,比利时贝尔斯; 9校园战略与合作伙伴关系,比利时贝尔斯,Janssen Pharmaceutica NV; 10英国伦敦大学伦敦大学学院痴呆研究所
神经氨酰酸 ( 1 ) 结构中存在的多种功能团使得其化学结构相对容易修改。所获得的衍生物在与神经氨酸酶(负责唾液酸水解的酶)相互作用的程度和方式以及病毒进入细胞的渗透性方面有所不同。下面介绍了一些修饰 Neu5Ac ( 3 ) 化学结构的方法:C-1 位酰胺化( 6 - 神经氨酸酶抑制剂)、C-3 位氟化( 7 - 神经氨酸酶抑制剂)、C-4 和 C-9 位叠氮化( 8 和 10 - 与大配体结合的便捷底物)、C-5 位脱乙酰胺( 9 - 合成酰胺衍生物的底物)、C-2 位脱水( 12 )以及 C-7 和 C-8 处羟基的醚化( 11 - 潜在的神经氨酸酶抑制剂)[3]。