申请人提供了经合组织404后急性皮肤刺激/腐蚀测试的数据,以及经合组织405后的急性眼刺测试。Affajeg得出的结论是,基于提出的数据和以前的EFSA意见,添加剂可能被认为是对眼睛和皮肤的侵蚀,而不是皮肤感知器。affajeg指出,添加剂的灰尘潜力显着高,高于被认为是关注的1000 mg/m 3极限,并且直径小于50 µm的高颗粒的高浓度,这表明工人在处理添加剂时可以暴露于可呼吸的灰尘。基于微生物的蛋白质性质,Affajeg得出结论,应通过吸入将添加剂视为呼吸道感官和危险性,并建议采取安全预防措施以限制工人暴露于添加剂中的粉尘中的灰尘接触。
Komagataella phaffii (K. phaffii) (Pichia pastoris),也称为生物技术酵母,是一种在生物技术和制药行业中具有多种应用的酵母菌种。这种甲基营养酵母作为重组蛋白的生产平台引起了人们的极大兴趣。它具有许多优点,包括有效的分泌表达,便于纯化异源蛋白,细胞密度高,生长迅速,翻译后变化,以及整合到基因组中的稳定基因表达。在过去的三十年里,K. phaffii 还被精炼为一个适应性强的细胞工厂,可以在实验室环境和工业规模上生产数百种生物分子。事实上,迄今为止,使用 K. phaffii 表达方法已经生成了 5000 多种重组蛋白,占细胞总蛋白的 30% 或总释放蛋白的 80%。除了已获得许可的 300 多种工业工艺外,K. phaffii 还用于制造 70 多种商业产品。其中包括对工业生物技术有用的酶,包括木聚糖酶、甘露聚糖酶、脂肪酶和植酸酶。其他是生物制药,包括人血清白蛋白、胰岛素、乙肝表面抗原和表皮生长因子。与其他表达系统相比,这种酵母还被认为是合成亚单位疫苗的特殊宿主,而亚单位疫苗最近已被替代疫苗类型所取代,例如灭活/杀死和减毒活疫苗。此外,通过多层次优化方法,如密码子偏好、基因剂量、启动子、信号肽和环境因素,可以实现重组蛋白的高效生产。因此,尽管 K. phaffii 表达系统高效、简单且工艺流程明确,但仍需确定理想条件,因为这些条件会根据目标蛋白而变化,以确保最高的重组蛋白生成量。本综述介绍了 K. phaffii 表达系统、其在工业和生物制药蛋白质生产中的重要性,以及一些高效蛋白质生产的生物加工和遗传改造策略。K. phaffii 最终将继续作为一种强大的表达系统在研究领域和工业应用中做出贡献。
1. Wickerham, J. Tropical Med. Hyg., 42, 176 (1939) 2. Williams, (Ed.),2005,《官方分析化学家协会官方分析方法》,第 19 版,AOAC,华盛顿特区 3. 微生物类型培养物保藏中心和基因库 (MTCC) 微生物技术研究所,昌迪加尔。 4. Isenberg, HD 《临床微生物学程序手册》第 2 版。 5. Jorgensen, JH、Pfaller, MA、Carroll, KC、Funke, G.、Landry, ML、Richter, SS 和 Warnock., DW (2015) 《临床微生物学手册》,第 11 版。 1. 6. 美国公共卫生协会,《乳制品检验标准方法》,1978 年,第 14 版,华盛顿特区 7. Salfinger Y. 和 Tortorello ML,第五版(编辑),2015 年,《食品微生物检验方法概要》,美国公共卫生协会,华盛顿特区 8. Wehr HM 和 Frank JH,2004 年,《乳制品微生物检验标准方法》,第 17 版,APHA Inc.,华盛顿特区
抽象引入酵母β-葡聚糖(YBG)通过激活巨噬细胞增强免疫系统而被认可,这是一种关键的防御机制。鉴于上呼吸道感染(URTI)对生产力和医疗保健成本的全球患病率和影响,YBG已将有望作为反复呼吸道感染的潜在治疗和预防策略。然而,关于YBG在较低剂量下与URTI,疲劳,免疫反应和它们如何影响肠道菌群组成的不确定性有关的YBG的疗效知之甚少。方法和分析这个为期12周的随机,双盲,安慰剂控制,平行组临床试验旨在评估YBG 1,3/1,6对呼吸道感染,疲劳,免疫标记和肠道健康的疗效。这项研究涉及198名18-59岁年龄的成年人,其应力量表10(评分14-26)和患者健康问卷9(得分≥9)进行了评估;在过去的6个月中,使用杰克逊冷量表评估了普通感冒的症状。这些参与者将被随机分为三组,以120 mg,204 mg或安慰剂接收YBG 1,3/1,6。结果措施包括呼吸道感染症状,疲劳,情绪状态和使用威斯康星州上呼吸道症状量表评估的生活质量,多维疲劳清单,情绪状态的概况和Short Form Form 36健康调查调查问卷。此外,还将进行全血分析和免疫,炎症和氧化应激生物标志物的评估。次要结果包括使用16S rRNA测序的粪便样品进行肠道菌群分析。伦理和传播该研究的研究方案已由马来西亚大学研究伦理委员会审查和批准(UKM/PPI/111/8/JEP-2023-211)。这些发现将被传播给参与者,医疗保健专业人员
本技术报告重点介绍用于生产这些物质的发酵工艺,特别关注在其开发和制造中使用排除方法的情况。但是,在一份技术报告中评估市场上每种酶、微生物和酵母产品的发酵工艺以及允许和排除方法的潜在用途并不现实。相反,我们概述了发酵工艺以及用于生产这些材料的可能方式,包括允许和排除方法,并提供示例和注意事项。本报告末尾的附录表 4 中包含了酶、微生物和酵母的制造商和品牌名称的示例列表。此外,表 5 还包含酶及其用途、CAS RN 和 EC 识别号的列表。
NEVES,H.等人营养资源的竞争掩盖了细菌突变的真实频率。 BMC 生物学,v. 18,页194,2020年。网址:https://doi.org/10.1186/s12915-020-00913-1。访问日期:7月24日。 2024. 巴西巴西利亚。研究人员揭示农场生产生物投入的风险并倡导立法现代化。 2022 年。网址:https://www.embrapa.br/busca-de-noticias/-/noticia/70837683/pesquisadores-expoem-riscos-da-producao-on-farm-de-bioinsumos-e-defendem-modernizacao-da-legislacao。访问日期:7月24日。 2024. ROCHA,Thiago Moura 等人通过固态发酵获得的农业生物投入:从生物精炼厂的生产到可持续农业。
比例4g糖7.5g新鲜酵母或2.1克干酵母150ml水70克麦面粉烧杯200ml玻璃棒5测量缸100ml或烧杯3水浴(冷,40°C,60°C)将面粉,糖和水混合在烧杯中,形成均匀的面团。2。将30毫升倒入测量缸作为对照混合物(在室温下)。3。在剩余的面团中添加新鲜或干酵母。4。用30毫升的酵母面团填充其余四个测量缸,并将其暴露于不同的温度条件:测量气缸1:在室温下无酵母的面团。测量气缸2:在室温下测量气缸处的酵母面团3:冷水浴中的酵母面团测量缸4:温水浴中的酵母面团(40°C)测量气缸5:热水浴中的酵母面团(60°C)