其中,葡萄糖的便携式传感器需求量很高,因为糖尿病患者需要在日常生活中自加检查葡萄糖水平。2特别是,糖尿病并发症可能是由于血浆葡萄糖水平的波动或恒定的高葡萄糖水平引起的,3意味着准确的葡萄糖监测方法至关重要。朝着人类血液样品中葡萄糖进行准确检测,迄今已广泛开发酶传感器。基于检测酶的催化反应的原则(例如,葡萄糖氧化酶)具有很高的选择性和敏感性,而对酶电极的干扰影响可以通过电动活性物质的氧化来诱导(例如,抗坏血酸)在人类血液样本中。4此外,在实际的感应环境中,生物识别材料对物理和/或化学刺激的不稳定性仍然是一个关注点。2认为感应系统的鲁棒性,人造受体5
存在电化学生物传感器,包括基于杂交的传感器,DNA-酶传感器和DNA-MODIED电极传感器。无标签的电化学DNA生物传感器使用电化学传感器来检测和测量样品中DNA的存在,而无需检测到可检测的标签。4比传统的DNA生物传感器具有多个优点,包括高灵敏度,特定城市以及检测少量DNA的能力。他们也相对简单且廉价地制造和运营,使它们成为许多应用程序的吸引人选择。5 DNA电化学生物传感器最有前途的应用之一是医学诊断的ELD。6这些传感器有潜力快速,准确地检测到体内与疾病相关的生物标志物(例如蛋白质或核酸)的存在。这可能会允许早期发现疾病,例如癌症,8种传染病和遗传疾病,从而导致更及时和有效的治疗。9除了医疗应用外,DNA电化学生物传感器还具有潜在的用途,例如,这些传感器可用于检测水,土壤或空气中有害化学物质或污染物的存在。10
背景信息 - 背景信息 - 背景信息背景信息有关Paul Ehrlich和Ludwig Darmstaedter奖2025年授予的授予Andrea Ablasser教授,Glen Barber博士和Zhijian J. Chen教授的DNA时,DNA触发的牢房将使我们的身体的细胞暴露给许多不同的植物植物,包括病毒感染和癌症,癌症的牢房都暴露于我们的身体上,并将其触发。所有这些威胁的共同点是,它们会导致DNA双链(DsDNA)出现在细胞的血浆中 - 它们不属于它们,并且它们作为外国遗传信息的存在标志着最大的危险。即使我们自己的dsDNA也不应在细胞核和线粒体之外存在。我们先天的免疫系统如何承认和抵御错误位置的DNA危险,这是长期以来一直是一个谜。这三名获奖者在2008年至2013年之间解决了这一问题,此后越来越全面地澄清了它。他们发现了一种从酶传感器开始的信号通路,该传感器一旦在细胞质中检测到它,该传感器就会抓住DSDNA。酶传感器在过程中改变了其形状,从而使其能够催化分子信使的形成。此使者又触发了一个细胞内受体,该受体通过将自己的通信发送给细胞核中的某些基因,要求它们立即产生干扰素,从而接收和翻译使者的调度。这些干扰素扩散到周围的组织并寻求帮助。确实为医学提供了双重机会,可以在此信号通路中进行治疗。这种所谓的CGAS刺道途径的区别是它的普遍性:其传感器没有区分外源性DSDNA和内源性DSDNA。这违反了我们的免疫系统必须明确区分“外国”和“自我”的规则,这种违规行为更具风险,因为它具有无意的自我毁灭的可能性。我们每天都会受到数千种细菌和病毒的攻击。在大多数情况下,我们的身体成功地抵御了这些攻击。这要归功于其先天的免疫系统,它使入侵者保持远处,直到其信号激活了人体获得的免疫系统,后者的抗体和T细胞消除了攻击者,这可能需要几天的时间。没有天生的免疫力,如今我们几乎无法生存。尽管如此,对这种免疫力的研究长期以来一直带来了阴暗的存在。虽然在20世纪,详细阐明了获得的免疫力的基本特征,但长期以来一直尚不清楚先天免疫系统如何感知微生物攻击。这仅在1990年代中期发生了变化,这些发现是由朱尔斯·霍夫曼(Jules Hoffmann)独立进行的,这些发现没有获得免疫系统,而布鲁斯·贝特勒(Bruce Beutler)则在
摘要:本文,提出了仅使用办公级工具(即卷到滚动热压印)将激光生产的氧化石墨烯(RGO)在柔性聚合物上的策略首次证明其直接生物电动分析的有效性。这种直接,可扩展和低成本的方法使我们能够克服生物分析设备中激光诱导的RGO膜的整合的极限。激光生产的RGO已使用简单的滚动层型(PET,PVC和EVA)热压到不同的聚合物底物(PET,PVC和EVA);通过形态化学和电化学表征将获得的TS-RGO膜与本机RGO(未转移)进行了比较。尤其是,已经研究了酶对催化过程的影响,研究了果糖脱氢酶(FDH)和TS-RGO传感器之间的直接电子转移(DET)反应。在TS-RGO传感器之间观察到了显着的差异。事实证明,PET是支持激光诱导的RGO转移的选择性底物,从而保留了天然材料的形态化学特征并返回降低的电容电流。值得注意的是,TS-RGO使用非常低量的FDH单元(15 MU)确保上催化性。最终,通过低成本台式技术制造了基于TS-RGO的第三代完整酶传感器。ts -rgo PET表现出比天然RGO优于的生物分析性能,使得敏感(0.0289μa cm -2μm -1 -m -1)且可重现(RSD = 3%,n = 3)D-在纳米摩尔水平下确定果糖(LOD =0.2μm)。ts-rgo的利用性作为一个需要的设备证明了 ts-rgo的可利用性。 关键字:减少氧化石墨烯,CO 2-激光器,生物催化,柔性生物传感器,纳米材料导电膜,电化学生物传感器ts-rgo的可利用性。关键字:减少氧化石墨烯,CO 2-激光器,生物催化,柔性生物传感器,纳米材料导电膜,电化学生物传感器
背景信息•背景信息•背景信息背景信息,用于分配Paul Ehrlich-和Ludwig Darmstaedter奖2025年教授博士。 Andrea Ablasser,博士教授格伦·巴伯(Glen Barber)和博士教授当DNA警报触发我们身体的细胞时,Zhijian J. Chen暴露于许多不同的威胁。这包括例如病毒感染,癌症和其发电厂(线粒体)中的事故。所有这些威胁共同表明它们在没有生意的细胞等离子体中显示了DNA双链(DSDNA)。那里信号外国遗传信息。也不应出现在细胞核和线粒体之外。随着我们先天的免疫系统承认并消除了错误位置的DNA的危险,长期以来一直是一个谜。这三名获奖者在2008年至2013年之间解决了这一问题,从那以后,它得到了越来越广泛的通知。他们在开头发现了一个信号路径,酶传感器为。一旦他在细胞等离子体中跟踪dsdna,他就会抓住她。这会改变其形状,从而可以催化分子信使的形成。该使者控制着一个细胞内受体,该受体通过使某些基因对齐在细胞核中接受并转换信使的信息:立即产生干扰素。这些干扰素散布在周围的组织中,并寻求帮助。这违反了我们的免疫系统“奇怪”和“本身”必须明确区分的规则。区别于所谓的CGAS-sting-Pathway是其普遍性:它的传感器没有区分外部和人体自己的DSDNA。这种违反规则的行为是有风险的,因为它具有无意自我毁灭的可能性。它提供了一种双重方法来干预此信号路径。每天我们受到数千种细菌和病毒的攻击。在大多数情况下,我们的身体成功地抵御了这些攻击。这要归功于其先天的免疫系统,入侵者在国际象棋中持有它,直到他的信号激活了获得的免疫系统,抗体和T细胞以关闭攻击者。在此之前可能需要几天。没有天生的免疫力,如今我们几乎无法生存。尽管如此,他们的研究长期以来一直在阴暗的存在。虽然20th世纪非常精确地知道,很长一段时间以来,先天性免疫系统如何感知微生物攻击。仅通过朱尔斯·霍夫曼(Jules Hoffmann)和布鲁斯·贝特勒(Bruce Beutler)的发现而改变