摘要:定向进化通过迭代诱变促进酶工程。尽管高通量筛选应用广泛,但构建“智能库”以有效识别有益变体仍然是该社区面临的主要挑战。在这里,我们基于 EnzyHTP 开发了一种新的计算定向进化协议,EnzyHTP 是我们之前报道过的用于自动化酶建模的软件。为了提高吞吐效率,我们实施了一种自适应资源分配策略,该策略根据工作流中酶建模子任务的特定需求动态分配不同类型的计算资源(例如 GPU/CPU)。我们将该策略实现为 Python 库,并使用氟乙酸脱卤酶作为模型酶测试了该库。结果表明,与在整个工作流中 CPU 和 GPU 都随时可用的固定资源分配相比,应用自适应资源分配可以节省 87% 的 CPU 小时数和 14% 的 GPU 小时数。此外,我们在自适应资源分配框架下构建了一个计算定向进化协议。该工作流程在 Kemp 消除酶定向进化实验中针对两轮突变筛选进行了测试,总共有 184 个突变体。使用折叠稳定性和静电稳定能作为计算读数,我们重现了四个实验观察到的目标变体中的三个。借助该工作流程,整个计算任务(即 18.4 μs MD 和 18,400 QM 单点计算)在三天内使用约 30 个 GPU 和约 1000 个 CPU 完成。
脂蛋白血症。前列腺素代谢 - COX 和 LOX 途径。脂质累积病和脂肪肝。牛奶脂质:分类和物理特性。自氧化、自氧化的副产物、影响因素、预防和测量;抗氧化剂 - 酶和非酶抗氧化剂。 第三单元:碳水化合物、矿物质和维生素 碳水化合物:不同碳水化合物的分类和特性。纤维素、糖原、半纤维素和果胶。葡聚糖和麦芽葡聚糖的生产。醛糖和酮糖。差向异构体。乳糖:存在、异构体、分子结构。牛奶寡糖、结构、技术方面和健康促进方面。糖酵解和糖异生概述 - 调节。柠檬酸循环和调节。戊糖磷酸途径和糖醛酸途径。糖原代谢和调节。糖原累积病。半乳糖血症。果糖不耐症和果糖尿症。乙醛酸循环。科里循环。光合作用——光反应、循环和非循环光合磷酸化。暗反应——卡尔文循环。矿物质:主要矿物质和次要矿物质。水溶性维生素:硫胺素;核黄素;烟酸;泛酸;吡哆醇;生物素;叶酸和氰钴胺素。脂溶性维生素——维生素 A 和 D。第四单元:酶酶——分类和一般特性。pH、温度和底物浓度的影响。酶抑制——竞争性、非竞争性和非竞争性抑制剂的影响。辅酶和辅因子。酶的调节——反馈抑制和共价修饰。抗体酶、核酶、DNA 酶。固定化酶——固定化方法、应用。参考 T4 溶菌酶的酶工程。酶电极。工业和
对于一些合成化学家来说,在有机化学和酶化学界面处挖掘优势是一项挑战。化学酶合成规划工具可以有效地帮助识别小分子制造中的生物催化机会。计算机辅助合成规划 (CASP) 中的逆合成技术通过从目标开始并递归选择适当的断开连接,提出了从可用起始材料到目标的可行多步合成路线。从 50 多年前提出的有机化学早期 CASP 工具开始,7,8 这些方法已经得到改进,可以使用基于规则的方法和机器学习来概括已知反应,从而预测达到所需目标的实际有机合成路线。9 – 11 酶逆合成的最新发展显示出为酶开发类似的 CASP 工具的巨大潜力。12 – 15 Finnigan 等人最近整理了一小组经过专业编码的反应规则来描述用于生物催化的酶工具箱。 13 这些反应规则隐含地反映了不同酶类已确定的底物混杂性。这些规则所代表的酶已被证明在许多情况下适合酶工程,以接受新的底物。13 此外,它们还被成功地用于规划针对目标分子的生物催化级联。尽管 RetroBioCat 成功地规划了多步酶促途径,但它无法提出针对所需目标的化学酶促途径,该途径协同涉及有机和酶促方法。
@ tbi-insa,CNRS,INRAE,图卢兹,法国,工程师位置可在位于法国Insa-Toulouse的地面上的图卢兹生物技术研究所(TBI)的分子建模(Biocomputing)提供。实验室隶属于CNR和INRAE,并进行催化和酶工程,系统性和合成生物学,发酵,过程工程和ECO设计:https://www.toulouse-biotechnology institute.fr/成功的候选者(COTAIRSION CONTAILION CONTALITION STREMITION)(COTATAL SORTICTION)(COTATAL CONTALICAL)(COTATAL COTALTAL SORVITE)(COTATAL COTALITAL),合成生物学领域内的项目。它将更具尤其是应用一系列分子建模方法来调查涉及的酶(塑料,化学前体,脂质,脂质,碳水化合物,…),以便更好地理解序列/分子确定性,以促进逐步抗压效应,以促进逐步促进的分子确定性。雇用的工程师将负责进行分子建模研究,以更好地了解靶向酶的活性,特异性或热稳定性的结构和动力学特征。她/他将应用一系列分子建模和生物信息学技术(序列分析,蛋白质结构预测,分子对接,自由能预测,分子动力学模拟,…)来破译基本的结构和动力学决定性。需要一种生物学背景以及对蛋白质建模和蛋白质 - 配体相互作用的合理理解。资格这项工作将与计算生物学家,生物化学家和代谢工程师密切合作,以评估提议的酶设计。我们正在寻找一个具有积极进取的科学家,他在许多计算生物学领域拥有研究专业知识/培训,包括蛋白质建模,分子对接,分子动力学模拟以及序列分析,计算蛋白设计和酶的经验,这是一个很大的优势。对Linux的熟悉度。候选人将有机会在多样化且丰富的多学科环境中工作,并被酶催化,设计和工程领域的计算和实验专家所包围。申请人应享受团队合作,并具有良好的沟通能力。需要良好的英语技能,法语的概念将是一个加号。他/她将在法国图卢兹(31)的图卢兹生物技术学院工作。
关键词:定向进化,酶工程我们创建的酶催化了在生物系统中未知的反应。我们通过从现有蛋白质的“混杂”活性开始,指导新酶的演变,从而确定合成化学可能已知的催化活性,但尚未(尚未发现)。我们发现,血红素蛋白是新生物化学的绝妙来源:工程化的细胞色素P450和其他血红素蛋白催化了广泛的合成有用的碳和硝酸盐转移反应,从烷烃环丙烷从SI-C键形成到CH键的SI-C键形成,直达C-H键的氨化。观察大自然的巨大蛋白质目录的成员如何进化(只有几个突变)如何以高效率和选择性催化这些反应,甚至形成生物学中未知的化学键。这些结果表明,进化可以创新并使生活能够应对新的挑战或机遇的轻松。将来这些完全遗传编码的催化剂可能会进入生命未探索的大量化学空间。这些催化剂已经为使用化学计量试剂,罕见的过渡金属催化剂和有机溶剂提供了有效,成本效益,绿色的生物催化替代品,可在生产各种精美的化学品和药物中间体中生产有机溶剂。“用于碳硅键形成的细胞色素C的定向演变:将硅变成生命” S.B.J. Kan,R。D。Lewis,K。Chen,F。H。Arnold。 科学354,1048-1051(2016)。 Forte,D。Rozzell,J。 A. McIntosh,F。H。Arnold。 J.J. Kan,R。D。Lewis,K。Chen,F。H。Arnold。科学354,1048-1051(2016)。Forte,D。Rozzell,J。A. McIntosh,F。H。Arnold。 J.A. McIntosh,F。H。Arnold。J.“高度立体选择性的生物催化合成钥匙环丙烷中间至Ticagrelor” K。E. Hernandez,H。Renata,R。D. Lewis,S。B. J. Kan,C。Zhang,C。Zhang,J。J.ACS催化6,7810-7813(2016)。“酶控制的氮原子转移使C-H氨酸恢复”A. McIntosh,F。H。Arnold。 am。 化学。 Soc。 136,15505-15508(2014)“化学仿生生物催化:利用辅助因子依赖性酶的合成潜力来产生新的催化剂” C。K. Prier,F。H. Arnold。 J. am。 化学。 Soc。 137,13992-14006(2015)A. McIntosh,F。H。Arnold。am。化学。Soc。136,15505-15508(2014)“化学仿生生物催化:利用辅助因子依赖性酶的合成潜力来产生新的催化剂” C。K. Prier,F。H. Arnold。J.am。化学。Soc。137,13992-14006(2015)