我们提出了无模拟分数和流匹配([SF] 2 m),这是一种用于推断自随机动力学的无模拟Objective,给出了从任意源和目标分布中绘制的未配对样品。我们的方法一般 - 扩散模型训练中使用的得分匹配损失以及最近提出的流量匹配损耗用于训练连续归一化流量。[SF] 2 m将连续的随机构成建模为Schrödinger桥概率。它依赖于静态熵调查的最佳传输或Minibatch近似,以有效地学习SB,并使用模拟学习的随机过程。我们发现[SF] 2 m更有效,并且比先前的工作中基于仿真的方法为SB问题提供了更准确的解决方案。最后,我们将[SF] 2 m应用于快照数据学习细胞动力学的问题。值得注意的是,[SF] 2 m是在高维度中准确模拟细胞dynamics的第一种方法,并且可以从模拟数据中恢复已知的基因调节网络。我们的代码可在https://github.com/ atong01/conditional-flow-matching的TorchCFM软件包中找到。
摘要 心流是一种最佳或高峰体验状态,通常与专业和创造性表现有关。音乐家在演奏时经常体验到心流,然而,由于神经数据中存在大量伪影,这种难以捉摸的状态背后的神经机制仍未得到充分探索。在这里,我们通过关注心流体验后立即进入的静息状态来绕过这些问题。音乐家演奏了预期会可靠地引发心流状态的乐曲,并作为对照,演奏了不会引发心流的音乐作品。在心流状态之后,我们观察到上部 alpha(10-12 Hz)和 beta(15-30 Hz)波段的频谱功率更高,主要是在大脑前额叶区域。使用相位斜率指数进行的连接分析显示,右额叶簇影响了 θ(5 Hz)波段左颞叶和顶叶区域的活动,在报告高倾向性心流的音乐家中尤其明显。前顶叶控制网络内的 θ 波段连接促进了认知控制和目标导向注意力,这对于实现心流状态可能至关重要。这些结果揭示了与音乐家的即时心流后状态相关的大规模振荡相关性。重要的是,该框架有望在实验室环境中探索心流相关状态的神经基础,同时保持生态和内容有效性。
Appendix ............................................................................................................................................... 61-67
我们预见到可以在受量子纠错码 (QECC) 保护的量子比特流上搭载经典信息。为此,我们提出了一种通过故意引入噪声在量子流上发送经典比特序列的方法。这种噪声会引发一个受控的征兆序列,可以在不破坏量子叠加的情况下对其进行测量。然后可以使用这些征兆在量子流之上编码经典信息,从而实现多种可能的应用。具体而言,搭载量子流可以促进量子系统和网络的控制和注释。例如,考虑一个节点彼此交换量子信息的网络 [1-7]。除了用户数据之外,网络运行还需要同步模式、节点地址和路由参数等控制数据。在经典网络中,控制数据会消耗物理资源。例如,带内同步要求传输节点在数据流中插入特定模式的比特(消耗额外带宽)来分隔数据包,而接收节点则要求从传入的比特中搜索此类模式 [8]。然而,将量子比特作为控制数据插入对量子网络来说并不是一个可行的选择,因为测量会破坏量子态叠加 [9]。出于这个原因,一些研究断言量子网络将需要经典网络来实现带外信令和控制 [7]。另一方面,参考文献 [10-12] 开发了将经典比特和随机数(使用连续变量)一起传输以实现量子密钥分发 (QKD),以增强经典网络的安全性。相反,我们渴望将经典比特和量子比特(使用离散变量)一起传输,以控制量子网络。
现代 CPU 的核心频率和功率不断增加,正迅速达到这样一个临界点:CPU 频率和性能受到冷却技术所能提取的热量的限制。在移动环境中,随着外形尺寸变得越来越薄、越来越轻,这个问题变得越来越明显。移动平台通常会牺牲 CPU 性能来降低功耗和管理热量。通过降低皮肤温度和减少风扇噪音,这可以实现高性能计算,同时改善人体工程学。大多数可用的高性能 CPU 在芯片上提供热传感器,以进行热管理,通常采用模拟热二极管的形式。操作系统算法和平台嵌入式控制器读取温度并控制处理器功率。改进的热传感器直接转化为更好的系统性能、可靠性和人体工程学。在本文中,我们将介绍新的 Intel ® Core TM Duo 处理器温度传感功能,并介绍性能优势测量和结果。
对随机和不规则抽样的时间序列进行建模是在广泛的应用中发现的一个具有挑战性的问题,尤其是在医学中。神经随机微分方程(神经SDE)是针对此问题的有吸引力的建模技术,它可以将SDE的漂移和扩散项与神经网络相关。但是,当前用于训练神经SDE的算法需要通过SDE动力学进行反向传播,从而极大地限制了它们的可扩展性和稳定性。为了解决这个问题,我们提出了轨迹流匹配(TFM),该轨迹以无模拟方式训练神经SDE,通过动力学绕过反向传播。TFM利用从生成建模到模型时间序列的流量匹配技术。在这项工作中,我们首先为TFM学习时间序列数据建立必要条件。接下来,我们提出了一个改善训练稳定性的重新聚集技巧。最后,我们将TFM适应了临床时间序列设置,从绝对性能和不确定性预测方面,在四个临床时间序列数据集上的性能提高了,这是在这种情况下的关键参数。
•抗蛋糕的过滤媒体有助于防止呼吸器上积聚,从而提供更长的呼吸器寿命。(不适用于3M8515。)•每次修饰ASTM D2859焊接网络具有抗性。(不是替代面积。)•高级静电介质(AEM)技术通过材料增强了气流。•专有的3M™酷流™阀有助于减少呼吸器内部的热量积聚。
摘要:本文以酷儿为理论基础,探索设计与人工智能 (AI) 交互并以不同方式想象人工智能的可能性,为设计和人工智能的学术讨论做出了贡献。本文通过报告一项自理论实验来实现这一目标,在该实验中,我提出了以下问题:如果我们将人工智能理解为酷儿,一种处于形成状态的突变体;一种动态的、关系的、非二元的性别变体,会怎样?那么人工智能会如何以不同的方式出现在这个世界上并对我们人类采取行动?该实验使用生成对抗网络 (GAN) 来颠覆当今对人工智能的理解,并让新的人工智能命题生根发芽。这项工作让我们得以一窥设计拒绝的形式,这可能会让设计师在使用人工智能系统进行设计时认识到文化可计算性和自决性。