首席研究者已经对GO纳米片的基本物理特性和应用进行了研究。在GO纳米片和GO膜中的离子电导率中,我们发现离子电导率超过了Nafion的电导率。在还原形式的情况下,RGO,还通过还原方法成功控制了P型,N型和解体半导体特性的降低形式。此外,GO的氧官能团是负电荷的,杂种是通过与各种金属离子的静电相互作用形成的,并且发现以RGO杂种,金属氧化物和金属纳米颗粒的降低形式在RGO纳米片上支持。在GO和RGO纳米片的合成中,使用液体等离子体掺杂了各种原子,并且通过热液合成和Freeze-Drysing从GO和RGO纳米片形成的3D结构也成功。因此,着重于研究获得的材料中的钻石相变,我们首先合成了N-RGO的氮掺杂钻石。尽管结果是初步的,但我们观察到在纳米颗粒相中T C = 30 K的Meissner效应,而在大量相中,T C = 130 K。此外,从高温和高压在高压中合成的钻石显示出T C = 65 K的铁磁过渡。此外,它们还致力于合成硼掺杂和氧气掺杂的钻石。这些结果表明,在掺杂的钻石中开发各种功能材料的有效性,并且有必要迅速促进掺杂或表面修饰的钻石的研究和开发。
摘要:目的:热休克蛋白70(HSP70)家族是一组高度保守的分子助力者,对于维持细胞稳态必不可少。这些蛋白质对于蛋白质折叠,组装和降解是必需的,并且涉及从应力条件中恢复细胞。HSP70蛋白质因热休克,氧化应激和致病性感染而上调。他们的主要作用是防止蛋白质聚集,重新折叠错误折叠的蛋白质以及靶向不可损害的蛋白质的降解。鉴于它们参与了基本细胞过程和应激反应,HSP70蛋白对于细胞存活和调节癌症,神经变性和其他病理的疾病结局至关重要。本研究旨在了解各种HSP70成员的主要结构,物理化学特性,磷酸化,泛素化和替代聚腺苷酸化位点预测。方法:SMART和Internoscan软件用于域分析。分别使用Protparam,NetPhos 3.1服务器DTU和Mubisida进行物理化学分析,磷酸化和泛素化站点分析。使用EST数据库研究了替代聚腺苷酸化。结果:域分析表明,某些HSP70成员中存在盘绕圈和核苷酸结合结构域。五个HSP70家庭成员在其3'UTR中具有替代的聚腺苷酸化位点。结论:确定工作为其结构,功能,相互作用组和聚腺苷酸化模式提供了宝贵的见解。研究其在癌症等疾病中的治疗潜力可能会有所帮助。
MariskaBrüls,Sanam Foroutanparsa,ThéoMerland,C。ElizabethP. Maljaars,Maurien M.A. ol- Sthoorn等。多糖对GDL酸化的牛奶凝胶中蛋白网络形成的影响的定量图像分析。 食品结构,2023,38,pp.100352。 10.1016/j.foostr.2023.100352。 hal-04238300MariskaBrüls,Sanam Foroutanparsa,ThéoMerland,C。ElizabethP. Maljaars,Maurien M.A.ol- Sthoorn等。多糖对GDL酸化的牛奶凝胶中蛋白网络形成的影响的定量图像分析。食品结构,2023,38,pp.100352。10.1016/j.foostr.2023.100352。hal-04238300
具有 KMT2A 重排 (KMT2Ar) 的急性髓系白血病 (AML) 位于染色体 11q23 上,通常称为 KMT2A 重排 AML (KMT2Ar-AML)。这种变异具有高度侵袭性,其特点是疾病进展迅速且预后不良。对表观遗传变化(尤其是乳酸化)的了解日益增多,为研究和管理这种亚型开辟了新途径。乳酸化在癌症、炎症和组织再生中起着重要作用,但其潜在机制尚未完全了解。这项研究检查了乳酸化对 KMT2Ar-AML 内基因表达的影响,最初确定了十二个值得注意的乳酸化依赖性差异表达基因 (DEG)。利用先进的机器学习技术,确定了六个关键的乳酸化相关基因(PFN1、S100A6、CBR1、LDHB、LGALS1、PRDX1),这些基因对于预后评估至关重要,并与相关疾病途径相关。该研究还建议使用 PI3K 抑制剂和 Pevonedistat 作为调节免疫细胞浸润的可能治疗选择。我们的研究结果证实了乳酸化在 KMT2Ar-AML 中的关键作用,并确定了六个可作为诊断和治疗生物标记的关键基因。除了强调需要在临床环境中进一步验证外,这些发现还有助于我们了解 KMT2Ar-AML 的分子机制。
氧化磷酸化,电子传输链(ETC)和三磷酸腺苷(ATP)合酶的联合活性已成为抗生素治疗感染毒成菌和相关病原体的抗生素的宝贵靶标。在氧化磷酸化中,ET等建立了跨膜电化学质子梯度,从而为ATP合成提供动力。通过基于荧光素酶的ATP合成或测量氧气消耗的检测来监测氧化磷酸化可能在技术上具有挑战性且昂贵。这些局限性降低了这些方法在表征分枝杆菌氧化磷酸化抑制剂的效用。在这里我们表明,基于荧光的倒膜囊泡酸化(IMV)可以检测和区分抑制ETC的抑制,抑制ATP合酶和非特异性膜解偶联。在该测定中,来自smegmatis的IMV通过ETC或ATP合酶的活性酸化,后者对遗传进行了修饰,以使其充当ATP驱动的质子泵。通过9-氨基-6-氯-2-甲氧基因氨酸的荧光监测酸化,该酸氧化含量会在酸化的IMV中积聚和淬灭。非特异性膜解耦合器可防止琥珀酸酯和ATP驱动的IMV酸化。相比之下,ETC复合物III 2 IV 2抑制剂TelaceBEC(Q203)可防止琥珀酸驱动的酸化,但不能防止ATP驱动的酸化和ATP合酶抑制剂bedaquiline防止ATP驱动的酸化,但不能防止ATP驱动的酸化,但不能防止琥珀酸助长驱动的酸化。我们使用该测定法表明,正如先前提出的那样,兰索拉唑硫化物是复合物III 2 IV 2的抑制剂,而硫代嗪则是非特定于分枝杆菌膜的抑制剂。总体而言,该测定是简单,低成本且可扩展的,这将使其可用于识别和表征新的分枝杆菌氧化磷酸化抑制剂。
尽管取得了这种进展,但胸切开术后疼痛仍然有问题。在开放手术的时代,慢性疼痛,尤其是胸切开术后疼痛综合征(PTPS)是经常发生的。ptps与肺切除术导致的功能下降固有相关,它代表着一种显着的并发症,有可能降低患者的生活质量。尽管近年来,PTP的患病率随着微创手术的升高而降低,但仍未得到完全控制。有几个因素导致了该主题研究的有限进展,包括疼痛评估的固有主观性质,缺乏常规临床实践中通常使用的客观指标,缺乏针对程序技能培训的外科医生的系统性疼痛管理教育以及对该领域的兴趣有限的兴趣。这些因素在理解和解决胸切开术后疼痛方面统一取得了重大进步,导致该领域缺乏研究进展。在当代时代以微创手术为主的当代时代,我们在这里回顾了解决胸切开术后疼痛的各种方法。通过这篇综述,我们试图提高胸外科医生对术后疼痛的认识,并详细介绍目前可以采取的措施来最大程度地减少PTP。
Cf. Cf. pp KK aa CH CH 3 3 NH NH 3 3 + + = = 10.62 10.62 ; ; - - CO CO 2 2 - - 也酸化,通过诱导酸化,通过诱导
人类胚胎和神经干细胞的使用具有局限性作为帕金森氏病(PD)1-3的细胞疗法。获得胚胎或胎儿细胞在道德上可能是挑战,而移植的胚胎并不总是很容易获得1,2,4。此外,它们不是自体组织,要求患者使用免疫抑制药物。其他干细胞来源包括自体诱导的多能干(IPS)细胞,分化为多巴胺能祖细胞。但是,它们在PD中的临床测试仍处于起步阶段5。此外,未完全重编程的细胞可以引起有害的免疫反应6,7。一种更可行的方法可能是使用人体自己的维修机制。自体组织,例如周围神经,具有强大的修复功能,很容易获得,并且可以有效地获得8,9。我们的策略是遵守患者自己的修复性周围神经组织和
1。Div>畜牧业师,JL Airlangga University兽医学院。Div> Mulyorejo,校园C Mulyorejo,苏拉巴亚60115,印度尼西亚东爪哇省; 2。Div>兽医学院兽医学院兽医学院,Airlangga University,JL。Div> Mulyorejo,校园C Mulyorejo,苏拉巴亚60115,印度尼西亚东爪哇省; 3。兽医农业综合企业硕士,印度尼西亚东爪哇省Airlangga University,Airlangga University兽医学院; 4。Wijaya Kusuma Surabaya大学兽医学院,JL。 哈姆雷特·库邦(Hamlet Kupang XXV)第54号,杜库·库潘(Dukuh Kupang),杜库·帕基斯(Dukuh Pakis),苏拉巴亚(Surabaya)60225,印度尼西亚东爪哇省; 5。 动物营养实验室,韩国国立大学,韩国37224; 6。 kediri Kadiri伊斯兰大学农业学院的动物畜牧计划。 JL。 Suharmaji中士38,Kediri 64128,印度尼西亚东爪哇省; 7。 畜牧研究中心,国家研究与创新局(BRIN),鲍哥JL。 Raya Jakarta Bogor 32 Cibinong 16915,印度尼西亚西爪哇省; 8。 动物科学硕士计划,动物科学系,分子,细胞和器官功能专业,瓦格宁根大学和研究,瓦格宁根6708 PB,荷兰; 9。 Div>澳大利亚昆士兰州昆士兰州大学农业和食品可持续性学院。Wijaya Kusuma Surabaya大学兽医学院,JL。哈姆雷特·库邦(Hamlet Kupang XXV)第54号,杜库·库潘(Dukuh Kupang),杜库·帕基斯(Dukuh Pakis),苏拉巴亚(Surabaya)60225,印度尼西亚东爪哇省; 5。动物营养实验室,韩国国立大学,韩国37224; 6。kediri Kadiri伊斯兰大学农业学院的动物畜牧计划。JL。Suharmaji中士38,Kediri 64128,印度尼西亚东爪哇省; 7。畜牧研究中心,国家研究与创新局(BRIN),鲍哥JL。Raya Jakarta Bogor 32 Cibinong 16915,印度尼西亚西爪哇省; 8。动物科学硕士计划,动物科学系,分子,细胞和器官功能专业,瓦格宁根大学和研究,瓦格宁根6708 PB,荷兰; 9。Div>澳大利亚昆士兰州昆士兰州大学农业和食品可持续性学院。Corresponding author: Widya Paramita Lokapirnasari, e-mail: widya-p-l@fkh.unair.ac.id Co-authors: MAA: moh-a-a-a@fkh.unair.ac.id, NH: nanik.h@fkh.unair.ac.id, AS: aldhiasafira@gmail.com, DFA: dyndafebriana24@gmail.com,aiz:amadeainas@gmail.com,aby:bernyjulianto@uwks.ac.ac.id,ml:mirnylamid@fkh.unair.ac.ac.id,tdm:tabitamarbun@gmail.com zein.ahmad.b@mail.ugm.ac.id, ARK: aswinrafif@gmail.com, SCK: shendy.kurniawanshendycanadya@wur.nl, EBSP: erlycasna.br.s.pelawi-2020@fkh.unair.ac.id, AH: a.hasib@uqconnect.edu.au Received: 27-10-2023,接受:25-01-2024,在线发布:23-02-2024