。CC-BY 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 7 月 13 日发布。;https://doi.org/10.1101/2023.07.12.548685 doi:bioRxiv 预印本
fi g u r e 1抑制糖原磷酸化酶会刺激20至22个月大的小鼠的记忆形成。(a)实验的示意图;有关更多详细信息,请参阅图S2 a。(b,c)在第0天和第14天进行的熟悉会议期间的探索时间。(d)在熟悉会议中对任何对象的第一次探索的潜伏期,以及(e)延迟与第14天到第0天之间的第一次探索的比率是与海马可塑性相关的记忆形成索引。我们观察到Y-CTR和O-bay小鼠的空间取向增加(第14天的时间缩短),Y-bay和O-CTR小鼠的空间取向降低(第14天的时间延长)。(f)第14天的蔗糖偏好测试。(g)体重指数为第0天的体重百分比。(h)在第14天在rotarod测试中花费的时间。每个实验组n =9。组之间的统计学上显着变化表示(* p <0.05; ** p <0.01; *** p <0.001)。
先天免疫系统是宿主防御的第一线,研究干扰素(IFN)信号负调控的机制对于维持先天免疫反应的平衡很重要。在这里,我们发现宿主GTP结合蛋白4(NOG1)是先天免疫反应的负调节剂。NOG1的过表达抑制了病毒RNA和DNA介导的信号通路,NOG1缺乏症促进了抗病毒先天免疫反应,从而导致NOG1促进病毒复制的能力。囊泡口腔炎病毒(VSV)和单纯疱疹病毒1型(HSV-1)感染诱导NOG1缺乏小鼠的IFN-β蛋白较高水平。同时,NOG1缺陷型小鼠对VSV和HSV-1感染更具抗性。NOG1通过靶向IRF3抑制I型IFN产生。nog1与磷酸化的IFN调节因子3(IRF3)相互作用,以损害其DNA结合活性,从而下调IFN-β和下游IFN刺激基因(ISGS)的转录。NOG1的GTP结合域是负责此过程的原因。总而言之,我们的研究揭示了NOG1如何通过靶向IRF3对IFN-β进行负面影响的潜在机制,该机制发现NOG1在宿主先天免疫中的新作用。
本文件旨在作为持有或打算接受食品建筑登记的公司的指导文件,目的是生产罐头食品,这些食品被归类为酸,酸化或发酵。有其他指南适用于打算通过PDA申请或持有LFE(有限食品机构)许可证的公司。定义:酸性食品是自然pH值为4.6或以下的食物。示例包括:大多数水果,例如苹果,桃子,柠檬等。配方的酸性食物是由酸食品组成的食物,添加了少量低酸成分(通常小于10%)。低酸成分的低比例意味着pH值与主要成分的pH值不会显着变化。可能包括:一些烧烤酱,一些敷料,蛋黄酱。低酸食品的平衡pH值高于4.6,水活性高于0.85。示例包括:大多数汤,肉汁,未采摘的蔬菜和糖浆中的水果。酸化的食物由FDA定义为添加酸(通常是醋或柠檬汁)或酸性食物的低酸食品,并且其成品平衡pH值为4.6或以下,水活动(AW)大于0.85。可能包括:一些莎莎酱,一些调味料和腌制蔬菜。平衡pH-当产品的固体和液体部分具有相同的pH值时,所达到的状况。发酵食品 - 经受酸产生微生物的作用,将食物的pH降低到4.6或以下。例子包括:康普茶,韩国泡菜,酸菜,一些泡菜和绿橄榄。预定的过程 - 处理器选择的过程,在制造条件下足以使用,以实现和维护不允许具有公共健康意义的微生物增长的食物。它包括对pH的控制和其他关键因素,等同于主管加工机构建立的过程。处理授权 - 具有足够的学位,经验和评估产品微生物安全能力的个人或组织。当前的处理当局列表可以在AFDO网站上找到,或通过与宾夕法尼亚州食品科学系联系。水活动(AW) - 产品中自由水分的量度。这与产品中水百分比不同。pH-表达7个中性,较低值的溶液的酸度或碱度的图是酸性的,较高的值是碱性。
尽管甲状腺癌 (TC) 的总体预后良好,但低分化癌 (PDTC) 和间变性癌 (ATC,最致命的人类恶性肿瘤之一) 代表着重大的临床挑战。我们已经证明,活性 T172 磷酸化 CDK4 的存在预示着对 CDK4/6 抑制药物 (CDK4/6i) 包括 palbociclib 的敏感性。这里,在所有分化良好的 TC (n=29)、19/20 PDTC、16/23 ATC 和 18/21 TC 细胞系(包括 11 个 ATC 衍生的细胞系)中检测到了 CDK4 磷酸化。缺乏 CDK4 磷酸化的细胞系对 CDK4/6i 不敏感。RNA 测序和免疫组织化学显示,没有磷酸化 CDK4 的肿瘤和细胞系呈现出非常高的 p16 CDKN2A 水平,这与增殖活性有关。在这 7 个肿瘤中,有 5 个未发现 RB1 突变。p16/KI67 免疫组织化学和先前开发的 11 基因特征识别出可能不敏感的肿瘤,这些肿瘤缺乏 CDK4 磷酸化。在细胞系中,哌柏西利与达拉非尼/曲美替尼协同作用,完全且不可逆地抑制了增殖。联合用药可预防哌柏西利诱导的耐药机制,最显著的是 Cyclin E1-CDK2 激活和磷酸化 CDK4 复合物的矛盾稳定。我们的研究支持评估 CDK4/6i 用于 ATC/PDTC 治疗,包括与 MEK/BRAF 抑制剂联合使用。
386名参与者的结果为199名(52%),平均年龄为68(8)岁。血浆P-TAU217的CB患者的阳性AβPET结果(平均[SD],0.57 [0.43] pg/ml)或FTP PET(平均[SD],0.75 [0.30] pg/ml)的浓度与AD(平均[0.72 [SD],0.72 [0.37],no no nome),FTP PET(平均[0.30] pg/ml),here(0.75 [0.30] pg/ml),here and n no no nof and nof [0.37], 控制。在CBS中,P-TAU217具有出色的诊断性能,在接收器操作特征曲线(AUC)下,AβPET为0.87(95%CI,0.76-0.98; P <.001)和0.93(95%CI,0.83-1.00; P <.001)。在基线时,CBS-AD(n = 12)的个体由PET验证的血浆P-TAU217截止值0.25 pg/ml或更高,与CBS-FTLD的个体相比,基线时颞眼萎缩增加了(n = 39),而较长的人(n = 39),具有CBS-cbs-fterl faster faster fasters afstall faster afters aftast。与CBS-AD的人(平均[SD],3.5 [0.5] vs 0.8 [0.8]分/年/年相比,具有CBS-FTLD的个体在修改后的PSP评级量表上的进展也更快。
摘要:提高绿色供应链的有效性是最大程度地减少废物,优化资源使用并减少业务运营对环境影响的关键一步。为了实现这些目标,应在整个供应链中实施可持续实践。这样做,企业不仅可以提高环境绩效,而且可以降低成本,提高客户满意度并在市场上获得竞争优势。但是,由于存在竞争特征,不精确的信息以及缺乏知识,因此选择适当的绿色提供商是一个复杂且无法预测的决策问题。线性二磷酸化(LIDF)框架的主要目标是帮助决策者选择最佳的行动过程。本文介绍了几个新型聚合操作员(AOS),即线性双苯胺模糊软性最大含量平均值(LIDFSMA)和线性双苯胺模糊软性软体几何(LIDFSMG)操作员。然后通过一个简单的示例来证明所提出的方法的绿色供应商优化技术,该技术包含线性双磷灰石模糊含量,显示了该方法的实用性和适用性。总体而言,拟议的LIDF框架和AOS可以帮助决策者选择最合适的绿色提供商,从而提高绿色供应链的效率。
摘要 肝星状细胞 (HSC) 向活化状态的转分化会通过释放细胞外基质 (ECM) 成分增强肝纤维化,从而扭曲肝脏结构。由于可用的抗纤维化药物有限,可以考虑针对活化 HSC 的药物干预进行治疗。A-激酶锚定蛋白 12 (AKAP12) 是一种支架蛋白,可将蛋白激酶 A/C (PKA/PKC) 和细胞周期蛋白引导到特定位置,在时空上控制它们的生物学效应。研究表明,AKAP12 的支架功能会因磷酸化而改变。在之前发表的研究中,观察到了 AKAP12 磷酸化与 HSC 活化之间的关联。在这项研究中,我们证明,AKAP12 对内质网 (ER) 驻留胶原蛋白伴侣热休克蛋白 47 (HSP47) 的支架活性受到活化 HSC 中 AKAP12 位点特异性磷酸化的强烈抑制。CRISPR 定向基因编辑 AKAP12 的磷酸化位点可恢复其对 HSP47 的支架,抑制 HSP47 的胶原蛋白成熟功能和 HSC 活化。AKAP12 磷酸化编辑可显著抑制小鼠的纤维化、ER 应激反应、HSC 炎症信号和肝损伤。我们的总体研究结果表明 AKAP12 磷酸化具有促纤维化作用,可能成为肝纤维化治疗干预的靶点。
激酶抑制剂作为靶向疗法在改善癌症治疗效果方面发挥了重要作用。然而,仍然存在相当大的挑战,例如耐药性、无反应、患者分层、多药理学和确定联合疗法,在这些情况下,了解肿瘤激酶活性谱可能会带来变革。在这里,我们开发了一种基于图形和统计数据的算法,称为 KSTAR,将细胞和组织的磷酸化蛋白质组学测量值转换为激酶活性评分,该评分可推广并可用于临床流程,无需量化磷酸化位点。在这项工作中,我们证明 KSTAR 可靠地捕获不同组织和刺激环境中预期的激酶活性差异,允许直接比较来自独立实验的样本,并且在各种数据集大小中都具有稳健性。最后,我们将 KSTAR 应用于临床乳腺癌磷酸化蛋白质组学数据,发现从 KSTAR 推断激酶活性有可能补充乳腺癌患者 HER2 状态的当前临床诊断。
摘要 我们最近证明,纤维素分解产物纤维三糖是一种损伤相关分子模式 (DAMP),可诱导与细胞壁完整性相关的反应。下游反应的激活需要拟南芥马来酸二酯结构域内含有的纤维寡聚体受体激酶 1 (CORK1) 1。纤维三糖/CORK1 通路可诱导免疫反应,包括 NADPH 氧化酶介导的活性氧产生、丝裂原活化蛋白激酶 3/6 磷酸化依赖性防御基因激活以及防御激素的生物合成。然而,细胞壁分解产物的质外体积累也应激活细胞壁修复机制。我们证明,在将纤维三糖施用于拟南芥根部后数分钟内,参与活性纤维素合酶复合物在质膜中积累以及负责蛋白质运输到反式高尔基网络 (TGN) 和在反式高尔基网络内运输的多种蛋白质的磷酸化模式就会发生改变。参与半纤维素或果胶生物合成的酶的磷酸化模式和多糖合成酶的转录水平几乎不受纤维三糖处理的影响。我们的数据显示,参与纤维素生物合成和反式高尔基体运输的蛋白质的磷酸化模式是纤维三糖/CORK1 通路的早期靶标。