钛基磷酸钾(KTIOPO 4),通常称为KTP,以其在量子和光学技术中的应用而闻名。这项研究的重点是采用水热和共沉淀方法的KTP纳米晶体的合成,采用草酸作为封盖剂。X射线粉末衍射(XRD)分析证实了正骨KTP晶体的成功合成。傅立叶变换红外(FT-IR)光谱进一步验证了KTP内的键结构,其特征带对应于其在所有光谱中始终观察到的晶体结构。定量分析表明,水热方法产生的KTP纳米颗粒的平均晶粒大小约为35 nm,而共沉淀方法产生的较小的纳米颗粒,平均晶粒尺寸为22 nm。值得注意的是,在水热法中将草酸作为封盖剂的引入将晶粒尺寸降低15%至约30 nm,而在共沉淀法中,它意外地将晶粒尺寸增加了20%,导致纳米颗粒的平均晶粒尺寸为26 nm。此外,与通过热液方法合成的样品(约0.5%)相比,在共同沉淀的样品中发现晶格内的应变更高(约0.8%)。这些发现强调了合成方法和封盖剂对KTP纳米颗粒的大小,形态和结构完整性的重要影响。这种见解对于优化针对光学设备,光子学和量子技术的各种应用量身定制的KTP纳米颗粒的合成至关重要。水热方法显示出在产生较大纳米颗粒的功效,而草酸作为涂料剂的存在在控制晶粒尺寸和增强结构稳定性方面起着关键作用。
确定了一种传统的韩国发酵植物食品的jogi(鱼大西洋杂种,微角膜虫)对物理化学成分(例如颜色,有机酸和氨基酸)的物理化学成分的影响。随着发酵的影响,jogi添加的泡菜的颜色变化增加了,但与没有jogi添加的泡菜的对照组相比,很难用肉眼来区分。在所有实验组中减少糖的降低,随着发酵的进行,jogi的Kimchi的值较低。乙酸,柠檬酸,乳酸和乙醇在两种类型的泡菜中高度生产,最重要的是,jogi -baechu -kimchi组比对照组显示出更高的乙酸和乳酸含量。在两种类型的泡菜中,氨基酸的增加和减少相似。但是,在制造后,明显地,明显地,咸味成分天冬氨酸和谷氨酸的检测到高于对照组。随后,随着发酵的进行而趋于减少,但内容高于对照组的含量。上面的结果表明,与物理化学成分相比,JOGI添加对氨基酸(尤其是咸味成分)的含量具有更大的影响。
ISSN印刷:2617-4693 ISSN在线:2617-4707 IJABR 2024; 8(1): 634-637 www.biochemjournal.com Received: 02-12-2023 Accepted: 04-01-2024 Pushpa Hulagannavar Department of Biotechnology and Crop Improvement, KRC College of Horticulture, Arabhavi, UHS, Bagalkot, Karnataka, India Dileepkumar A Masuthi Department of Biotechnology and Crop改进,KRC园艺学院,Arabhavi,UHS,Bagalkot,Karnataka,India Lakshmidevamma tn Dept.园艺学院生物技术和作物改善学院,班加罗尔,UHS,Bagalkot,Karnataka,印度,Abdul Kareem M Dept.植物病理学,园艺学院,Sirsi,UHS,Bagalkot,Karnataka,印度Shivayogi Ryavalad Rhrec,Dharwad,Dharwad,uhs,uhs,bagalkot,bagalkot,Karnataka,印度Ratnakar Shet Dept.BCI,园艺学院,Sirsi,UHS,Bagalkot,Karnataka,印度MH Tatagar部门。昆虫学,园艺学院,Sirsi,UHS,Bagalkot,Karnataka,印度卡纳塔克邦,通讯作者:Dileepkumar A Masuthi生物技术与作物改善系,KRC园艺学院,Arabhavi,Arabhavi,UHS,UHS,UHS,UHS,BAGALKOT,KARNATAKA,INISIA DIV/DIV/DIV/DIV/DIV>
摘要:浸泡是制作速度的重要步骤。tempeh发酵通常涉及能够生产蛋白酶以分解蛋白质分子中肽键的自然存在。这项研究评估了在天然发酵过程中浸泡在蒸馏水中的12、24、36和48小时的蛋白质和氨基酸含量。在这项研究中,使用Kjeldahl技术确定粗蛋白,从蛋白质水解中确定氨基酸,并列举蛋白水解细菌以进行总板计数,并使用Vitek 2.0紧凑型系统进一步识别。结果表明,浸泡的千斤顶豆具有较高的蛋白质和氨基酸含量,人体需要16个必需氨基酸。浸泡的千斤顶豆的蛋白质含量在24和36 h时为35%到32%,48小时的蛋白质含量不等。浸泡12小时产生的氨基酸浓度最高,为38,000 mg/kg l-谷氨酸,最低14,000 mg/kg l-丙啉。七个孤立的细菌在脱脂牛奶琼脂上显示出蛋白水解活性,其菌落周围的透明区域为3.00 mm至10.65 mm。鉴定出的细菌是pediocococcus pentococcus pentocococcus,stenorophomonas一个元素粒细胞,sakazakii和klebsiella pneumonia ssp。总而言之,乳酸杆菌科和肠杆菌科是坦佩发酵过程中的主要细菌,表明在浸泡条件下,这些微叶酸盐之间的协同相互作用是它们在这种敌对环境中生存的一部分。
种子油可用作食用油,也越来越多地用于工业用途。尽管高油酸种子油更适合工业用途,但大多数种子油富含多不饱和脂肪酸 (PUFA),而油酸等单不饱和脂肪酸 (MUFA) 含量较低。亚麻荠油是一种新兴的油籽作物,种子含油量高,且能抵抗环境压力,其含有 60% 的 PUFA 和 30% 的 MUFA。六倍体亚麻荠携带三种 FAD2 同源物,编码脂肪酸去饱和酶 2 (FAD2),负责从油酸合成亚油酸。在本研究中,为了增加亚麻荠籽油中的 MUFA 含量,我们通过 CRISPR-Cas9 介导的基因编辑生成了 CsFAD2 敲除植物,使用包含 DsRed 作为选择标记的 pRedU6fad2EcCas9 载体、用于驱动覆盖三个 CsFAD2 同源物共同区域的单个向导 RNA (sgRNA) 的 U6 启动子以及用于驱动 Cas9 表达的卵细胞特异性启动子。我们使用来自转化亚麻荠叶片的基因组 DNA 通过 PCR 分析了 CsFAD2 同源物特异性序列。三对 FAD2 同源物的敲除导致矮小的丛生表型,但大大提高了种子中的 MUFA 水平(提高了 80%)。然而,具有两对 CsFAD2 同源物的转化子被敲除,但另一对野生型杂合子显示正常生长,种子 MUFA 产量增加了 60%。这些结果为通过基因组编辑影响多倍体作物生长的基因代谢工程提供了基础。