配制干粉吸入器 (DPI) 时需要具有某些特性的合适赋形剂,以将抗结核 (TB) 药物输送到肺部并在肺部和肺泡巨噬细胞中提供足够的药物浓度,以克服活动性和潜伏性结核感染。本研究旨在探索壳聚糖和海藻酸盐的组合在配制利福平 DPI 中的作用。使用不同组合的壳聚糖和海藻酸盐通过喷雾干燥制备利福平 DPI。对所得利福平干粉的粒度分布、形态、水分含量、药物含量和包封率进行了表征。除了在 pH 7.4 的磷酸盐缓冲液(含 0.05% 十二烷基硫酸钠)和 pH 4.5 的邻苯二甲酸酯缓冲液中的溶解研究外,还进行了对细胞系 A549 的细胞毒性研究。 DPI F3(RIF-Ch-Alg 2:1:1)中壳聚糖和海藻酸盐的组合在模拟肺液(2 小时内 78.301% ± 1.332%)和模拟巨噬细胞液(2 小时内 41.355% ± 1.259%)中均提供了利福平 DPI 的合适药物释放曲线。DPI F3 还具有 11.4288 ± 1.259 µm 的空气动力学粒径,并且在浓度高达 0.1 mg/ml 时也被认为对肺上皮细胞(活力 89.73%)是安全的。总之,壳聚糖和海藻酸盐的组合是一种有前途的载体,可用于开发具有适合结核病治疗特性的干粉吸入器。
抗生素耐药细菌的兴起强调了药物库中新抗生素的需求,以治疗细菌感染[1,2]。2018年,世界卫生组织(WHO)估计,每年大约1000万人中有150万人遭受结核病感染屈服于这种毁灭性的慢性感染[3,4]。尤其是紧迫的是需要具有新作用机理的抗生素。一个非常有吸引力的靶标是Dizinc酶二氨基二氨基二氨基酸酯酶(DAPE),[5],它是所有革兰氏阴性细菌和最革兰氏阴性细菌中原代赖氨酸合成途径中的一种酶[6]。因此,Div> dape是赖氨酸以及L,L-二二酰胺酸(L,L-DAP)的生产所必需的,这是细菌细胞壁生产中的关键组成部分。在幽门螺杆菌和分枝杆菌中进行的敲除实验表明,即使在赖氨酸柔软的培养基中,细菌也无法生存[7,8]。作为哺乳动物,人类不表达dape,赖氨酸是必不可少的饮食氨基酸。早些时候,我们筛选了一个潜在的DAPE抑制剂的少量库,并鉴定了含硫醇的血管紧张素转化酶(ACE)抑制剂药物Captopril作为DAPE [9]的低微摩尔抑制剂[9],此后已报道了与BOND-CASTOPRIL的DAPE的dape [10]。有趣的是,Diaz-Sanchez具有Dape与avonoids [11]以及孤立甲基和拆卸纤维的研究相互作用[12]。环丁酮是具有独特特性的中间体和合成靶标的重要类别[14,15]。最近,我们还报道了替代DAPE底物N 6,N 6-二甲基-SDAP的不对称合成以及基于DAPE的新的基于Ninhydrin的测定法[13]。紧张的四元环将环丁酮具有构象刚性的固定性,还使酮羰基相对于未经培养的酮而言更高。环丁酮在药物化学中已证明了实用性是共价但可逆的丝氨酸蛋白酶抑制剂,当时是由亲电的酮羰基来实现的,而SP 2
摘要:随着成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (Cas) 系统的出现,治疗性基因编辑变得越来越可行。然而,成功实施基于 CRISPR/Cas9 的疗法需要安全有效地在体内递送 CRISPR 成分,这仍然具有挑战性。本研究介绍了使用电喷雾技术成功制备、优化和表征装载两个 CRISPR 质粒的海藻酸盐纳米粒子 (ALG NPs)。该递送系统的目的是编辑另一个质粒(绿色荧光蛋白 (GFP))中的靶基因。评估了配方和工艺变量的影响。CRISPR ALG NPs 的平均尺寸和电位分别为 228 nm 和 − 4.42 mV。在保持有效载荷完整性的同时实现了超过 99.0% 的包封率。通过衰减全反射傅立叶变换红外光谱法确认了 ALG NPs 中 CRISPR 质粒的存在。测试表明,纳米粒子具有细胞相容性,并成功地将 Cas9 转基因引入 HepG2 细胞中。纳米粒子转染的 HepG2 能够通过在 GFP 基因中引入双链断裂 (DSB) 来编辑其目标质粒,这表明包裹在海藻酸盐纳米粒子中的 CRISPR 质粒具有生物活性。这表明该方法适用于体外或离体生物医学应用。对这些纳米粒子的未来研究可能会产生适合体内递送 CRISPR / Cas9 系统的纳米载体。
藻酸盐裂解酶和寡聚酸酯裂解酶催化藻酸盐的糖苷键的裂解,藻酸盐,这是由棕色藻类和其他生物体合成的酸性多糖。这些酶高度多样,目前已分为15个碳水化合物活性酶(Cazy)数据库的家族。我们探讨了结构和分类学的多样性,基因和转录本的生物地理分布以及来自全球海洋上层皮科浮游物社区的假定藻酸盐降解酶的潜在环境驱动因素。首先使用序列相似性网络对确定的序列进行分析,以评估其与Cazy成员的关系。与PL5,PL6,PL7,PL17和PL38家族有关的序列具有较高的基因和转录物丰度,温度是携带假定藻酸盐裂解酶基因的社区成员结构的关键驱动力。PL5同源物包括活性位点的关键残基中的变体,分配给“ candidatus pelagibacter”的序列显示出高基因和转录物丰度,与无机磷浓度负相关。序列分配给了黄杆菌和/或γ-细菌类别主导了PL6,PL7和PL17家族,尤其是与未经文化的偏光杆菌和Alteromonas Australica密切相关的序列。在PL38家族中,虽然从planctomycetota,verrucomicrobiota和Bacteroidota的序列分配给分类群,在大多数区域和深度上显示出最高的相对基因丰度,而高表达水平在高纬度的序列中观察到序列中的序列,分配给了euukaryota(例如eukaryota(e.g.,e.g.,phaeocystica)。总体而言,这项研究中发现的推定酶可能参与了各种生理过程,包括藻酸盐同化和生物合成。
随着生物甲烷扇形发展的发展,其在天然气网络中的注入增加,包括地质储藏。 在注射之前,添加O 2以消除Suldes。 在地质存储中预计O 2的共同注入(可接受的100 ppm的限制),例如深含水层,这些含水层含有自动微生物。 此O 2严格威胁着厌氧微生物及其来自天然气存储的单芳族烃的生物降解活性。 模拟深含水层条件的多学科研究对于conte或适应O 2的授权限制至关重要。 我们的研究没有显示含水岩石(矿物质和孔隙率)的主要修饰,而是社区多样性的含量,消除了耐药性较低的含量,并产生了新的平衡,从而允许苯降解。随着生物甲烷扇形发展的发展,其在天然气网络中的注入增加,包括地质储藏。在注射之前,添加O 2以消除Suldes。在地质存储中预计O 2的共同注入(可接受的100 ppm的限制),例如深含水层,这些含水层含有自动微生物。此O 2严格威胁着厌氧微生物及其来自天然气存储的单芳族烃的生物降解活性。模拟深含水层条件的多学科研究对于conte或适应O 2的授权限制至关重要。我们的研究没有显示含水岩石(矿物质和孔隙率)的主要修饰,而是社区多样性的含量,消除了耐药性较低的含量,并产生了新的平衡,从而允许苯降解。
基于生物的塑料,主要是多羟基烷烃(PHAS),为石油衍生的塑料提供了充满希望的替代品。第三代(3G;微藻/蓝细菌)生物量由于生物量快速生产力和代谢多功能性而变得非常重要。微藻可以通过利用CO 2和废水来产生PHA,并将它们确定为生物塑性生产的高度有希望和环保系统。这项全面的综述提供了对微藻-PHA生产的全面见解,从对物理和文化条件的优化到有效的PHA纯化过程。批判性审查还研究了培养策略,代谢工程和生物反应器发展方面的最新进步,这可能会导致更可持续和渐进的基于微藻的生物塑料积累。已经解决了藻类生物量产生通过综合废水处理的PHA积累的有效性。本综述研究了数学建模和新兴人工智能在推进基于藻类的PHA生产过程中的作用。最后,审查以讨论经济和社会挑战,生命周期分析以及先进微藻衍生的生物塑料生产的研究和开发前景的讨论结束,并在工业规模上预测了对经济上可行和可持续的基于微藻的PHA生产的潜在解决方案的预测。
姜油树脂中主要有效成分是姜辣素和姜烯酚。姜辣素具有多种药理活性,包括抗炎、抗氧化和镇痛作用。然而,姜辣素对热敏感,在高温下会降解,这限制了其在食用生姜时的功能效果。为了克服这些限制,我们进行了姜油树脂封装工艺,以努力改善其物理和功能特性,同时增加向体内的输送量。在本研究中,封装过程采用离子凝胶化方法进行,结果为珠子的形式。海藻酸盐用作姜油树脂的包封材料。使用 FTIR、SEM 分析、崩解测试对干珠进行表征,并通过紫外可见分光光度法评估包封效率。研究结果表明,以海藻酸盐为高分子材料,CaCl2为偶联剂,采用离子凝胶法可以合成载姜油树脂的海藻酸盐珠。本研究测试的姜油树脂浓度为0.9%、0.7%、0.5%和0.3%。当姜油树脂浓度为0.7%时,包封率最高,为72.480%。表面形貌分析表明,海藻酸盐珠具有粗糙多孔的质地,海藻酸盐聚合物中有可见的褶皱。此外,干珠的崩解时间少于30分钟。
在寻找治疗火鸡球虫病的草药替代品时,本试验旨在评估黑蒜末 ( Allium sativa ) 或姜黄粉 ( Curcuma longa ) 或二者的组合(包含在干海藻酸盐珠中)是否能够控制火鸡雄禽的临床球虫病。总共将 150 只 12 日龄的雄性火鸡随机分成 15 个围栏,每个围栏 10 只火鸡。组别为:CTR = 对照未接受治疗的火鸡;GAR = 火鸡饲喂其饮食中 4% 含有包含在干海藻酸盐珠中的蒜末;CUR = 治疗组饲喂 4% 姜黄粉(也制成干海藻酸盐珠);GA = 仅含海藻酸盐),GC = 火鸡饲喂其饮食中 8% 含有黑蒜末和姜黄粉(4%)的混合物,并包含在干海藻酸盐珠中。考虑到平均饲料摄入量,将治疗方法纳入饲料处理中。结果显示,与 CTR 组和其他治疗方法相比,GC 组火鸡在前六周龄每克粪便中的卵囊数量显著减少。这些结果表明,在火鸡雏鸡中,将蒜末和姜黄粉组合(包含在海藻酸盐珠中并占其饲料摄入量的 4%)具有统计学上显著的抗球虫活性。此外,与其他三组相比,该组合记录了更好的生产变量(P < 0.05)。在火鸡的消化道中使用载体可以提高植物提取物控制球虫病的有效性。
尽管厌氧消化酸盐含有> 90%的水,但消化酸盐的养分含量高使其在经济和技术上对现有废水处理技术的治疗中的处理。这项研究分别评估了Rhizopus Delemar DSM 905和磷酸盐蓄积生物(PAOS)从消化酸盐中去除营养的可行性。使用根茎DEMAR DSM 905,我们研究了从消化剂供应的培养基和富马酸产生中的养分清除,这是消化治疗的潜在经济策略。培养r。Devemar DSM 905在含有25%(v/v)消化酸盐,Al,Cr,Cu,Cu,Fe,K,Mg,Mg,Mn,Mn,Pb和Zn的浓度的发酵培养基中,分别降低了40、12、74、96、12、12、26、26、26、26、23%,〜18和28%。同样,总磷,总氮,磷酸盐(PO 4 -P),铵(NH 4 -N),硝酸盐(NO 3 -N)和硫的浓度分别降低了93、88、88、97、98、69和13%。同时,补充了25%和15%(v/v)消化的培养物产生了富马酸盐(分别〜11和〜17 g/l)的可比滴度,以消化不供电的对照培养物。使用PAO,我们评估了总磷,总氮,PO 4 -P和NH 4 -N的去除,其中浓度分别降低了86、90%,〜99和100%,分别为60%(v/v)消化。这项研究为微生物从厌氧消化酸盐中去除过量的营养物质提供了其他基础,并有可能从目前主要是治疗的废物流中从这种废物流中恢复未来的水。
g/l-broth柠檬酸钠在24小时内确定为在奶昔瓶中进行的cAMP发酵液的最佳操纵条件(Li等人。2018)。为了研究代谢机制,在7 L搅拌罐生物反应器中进行了具有最佳状态的批处理发酵。如图1,由于与对照组相比,葡萄糖的最终cAMP浓度和葡萄糖的转化率分别达到4.34 g/l和0.076 g/g,分别提高了30.7%和29.8%(不加柠檬酸盐)。在24小时内,营地内容和合成率明显提高,并保持在控制水平的水平上,这表明柠檬酸盐添加确实加速了营地的产量。用柠檬酸盐发酵的最终OD 600和葡萄糖消耗量