抽象的碳酸酐酶12被认为是癌细胞中的致癌和酸性微环境因子。为了验证组胺信号作为抗癌信号的作用,我们确定了CA12及其相关的碳酸氢盐转运蛋白的作用。在这项研究中,组胺刺激介导了CA12在肺癌细胞中的错误定位。组胺受体激活介导的Ca12内吞作用和pH值通过CAMKII抑制恢复。CA12相关的AE2表达增强了,而NBCN1表达及其活性通过组胺刺激降低。组胺受体激活介导的酸化是通过内部化的CA12和NBCN1诱导的,同时通过增强的AE2表达来增加碳酸氢盐外排。抑制bafilomycin对蛋白质运输的抑制作用恢复了Ca12和AE2局部性,并减少了细胞酸中毒。因此,我们验证了组胺刺激诱导的酸性场景 - 揭示了CA12及其相关的碳酸氢盐转运蛋白在肺癌细胞中的运输及其相关的碳酸氢盐转运蛋白及其失调的pH调节可能与组胺信号信号介导的介导的抗癌抗癌过程有关。
摘要:候选药物在体外合理设计的候选药物通常是由于低组织的可用性或由于不必要的侧面影响而导致体内效率低。要克服体外有理药物设计的局限性,需要在细胞环境中评估候选药物与目标的结合。在这里,我们应用了细胞内NMR来研究一组批准的药物与活体细胞中碳酸酐酶(CA)的同工型II的结合。某些化合物最初是针对其他靶标的开发的,后来被发现抑制CAS。我们观察到剂量和时间依赖性的结合显着不同,其中一些药物比其他药物表现出更复杂的行为。特别是,即使在外部培养基中存在游离化合物的情况下,一些化合物也显示出与细胞内Ca II逐渐解开的,因此可以防止稳定的蛋白质 - 配体配合物的定量形成。这种观察结果可以与这些化合物的已知靶靶性结合活性相关,这表明这种方法可以在多白素药物设计的早期阶段提供有关铅候选者的药代动力学专业培训的信息。■简介
磺胺类药物的开发早在 1908 年就开始了 [ 1 ],当时“Prontosil”(4-(2,4-二氨基苯基)二嗪基)-苯磺酰胺 [ 2 ] 的抗菌作用首次被成功用于治疗人类细菌性脓毒症 [ 3 ]。尽管今天,由于其他类别药物的发展,磺胺类药物或多或少已失去了其作为抗菌药物的重要性,但随着人们观察到此类药物的代表是碳酸酐酶的良好抑制剂 [ 4 ],一个新时代开始了。碳酸酐酶 (CAs; EC 4.2.1.1) 对生命至关重要,因为它们通过将二氧化碳和水转化为碳酸氢盐和质子来平衡组织和血液中的酸碱平衡。 CA 的重要性可从其高周转率 [ 5 ] 看出,其周转率甚至比乙酰胆碱酯酶 (AChE) 还要快,乙酰胆碱酯酶是突触传递所必需的,因此属于最快的催化酶。此外,已证明其同工型碳酸酐酶 IX 在许多类型的癌症中过度表达,从而导致周围组织酸中毒,从而促进肿瘤生长、侵袭和增殖 [ 6 ]。此外,缺氧引起的肿瘤微环境变化会促进侵袭性和耐药性癌症表型 [ 7 ],从而导致癌症患者预后不良 [ 8 ]。尤其是近年来,碳酸酐酶抑制剂 (CAI) 的开发引起了广泛关注 [ 9 , 10 ],因为 CAI 可能有助于抗癌治疗 [ 11 ]。尤其是针对 hCA IX 和 XII 似乎具有重大意义,因为这些酶在包括乳腺癌、宫颈癌和肺癌在内的缺氧肿瘤中过度表达 [ 12 - 17 ]。这些金属酶在许多生理和病理过程中发挥作用。十五种人类 CA 亚型中的两种,即 hCA IX 和 XII,由于 HIF-1/2(转录因子
抽象的临床前和临床研究表明,除具有滥用潜力外,精神刺激物还可能引起脑功能障碍和/或神经毒性作用。由精神刺激物引起的中央毒性可能构成严重的健康风险,因为这些物质的娱乐使用在年轻人和成年人中正在上升。本评论概述了2018年至2023年之间进行的最新研究概述,重点是苯丙胺,可卡因,甲基苯丙胺,3,4-甲基甲基甲基甲基甲基苯丙胺,甲基甲基苯胺和NICETINE,NICETINE,NICETINE,甲基苯基甲基甲甲基苯二甲胺,甲基苯丙胺,3,4-甲基苯甲胺,3,4-甲基苯丙胺,3,4-甲基苯丙胺,3,4-甲基苯丙胺,3,4-甲基苯丙胺引起的脑功能障碍和神经毒性作用。详细阐明了基于精神刺激诱导的脑功能障碍和神经毒性的因素和机制,对于理解使用精神刺激物来用于娱乐和/或治疗用途的个人中可能发生的急性和持久的有害脑作用至关重要。关键词:3,4-甲基二甲基甲基苯丙胺;苯丙胺;咖啡因;细胞培养;可卡因;甲基苯丙胺;哌醋甲酯;神经毒性;尼古丁
摘要:新型的二氢 - 吡咯-2-一种化合物(具有双磺酰胺基团)是通过使用三氟乙酸作为催化剂的一锅三分之二方法合成的。使用密度功能理论(DFT)和冷凝的福克函数的计算分析探索了结构 - 反应性关系。对人碳酸酯同工型(HCA I,II,IX,XII)的评估显示出有效的抑制作用。 广泛表达的胞质HCA I被抑制在一系列浓度(K I 3.9 - 870.9 nm)中。 HCA II(也是胞质的)也表现出良好的抑制作用。 值得注意的是,所有化合物有效地抑制了与肿瘤相关的HCA IX(K I 1.9 - 211.2 nm)和HCA XII(低纳米尔)。 对MCF7癌细胞的生物学评估强调了该化合物的能力与阿霉素相结合,从而显着影响肿瘤细胞活力。 这些发现强调了癌症治疗中合成化合物的潜在治疗相关性。 ■简介对人碳酸酯同工型(HCA I,II,IX,XII)的评估显示出有效的抑制作用。广泛表达的胞质HCA I被抑制在一系列浓度(K I 3.9 - 870.9 nm)中。HCA II(也是胞质的)也表现出良好的抑制作用。值得注意的是,所有化合物有效地抑制了与肿瘤相关的HCA IX(K I 1.9 - 211.2 nm)和HCA XII(低纳米尔)。对MCF7癌细胞的生物学评估强调了该化合物的能力与阿霉素相结合,从而显着影响肿瘤细胞活力。这些发现强调了癌症治疗中合成化合物的潜在治疗相关性。■简介
病例1-一名患有青少年慢性关节炎的8岁男孩,使用泼尼松龙、吲哚美辛和阿洛昔林3g/d,症状得到良好控制。加用碳酸酐酶抑制剂二氯苯那胺25mg/d 3次,以控制反复发作的青光眼。血清水杨酸浓度稳定在150mg/l左右。阿洛昔林增加到3-6g/d,以控制恶化的关节疼痛。一个月后,他因嗜睡、呕吐和过度换气入院。血清电解质浓度为:尿素5mmol/l(30g/100ml);钠143mmol(mEq)/l;钾3-6mmol(mEq)/l;碳酸氢盐10mmol(mEq)/l;水杨酸250mg/l。他接受治疗的医院没有测量动脉血气张力的设备。停用二氯苯那胺和阿洛昔林。用静脉注射盐水和碳酸氢钠纠正酸中毒,他完全康复。随后,他开始用二氯苯那胺和萘普生进行更多治疗,但没有出现进一步的酸碱异常。案例 2 — 一名 22 岁女性,有 18 年的青少年慢性关节炎病史,多年来一直接受泼尼松龙、吲哚美辛、水杨酸 3-5 克/天和间歇性乙酰唑胺治疗。在她的关节炎恶化后,水杨酸的剂量增加到 4 克/天,并加用乙酰唑胺 250 毫克/天四次以治疗青光眼。十天后,她入院时昏迷不醒,换气过度(呼吸频率 38 次/分钟)。无局部神经体征,腰椎穿刺检查颈部僵硬情况结果正常。血清电解质浓度为:钠 143 mmol/l、钾 4 2 mmol/l、碳酸氢盐 3-8 mmol/l。动脉血气 pH 值为 7 33;二氧化碳分压为 1-04 kPa(7-8 mm Hg),氧分压为 17 4 kPa(131 mm Hg),碱缺失为 17 6 mmol(mEq)/l。水杨酸浓度为 262 mg/l。用静脉注射盐水和碳酸氢钠纠正代谢性酸中毒,她恢复良好。继续使用乙酰唑胺控制青光眼,但停用水杨酸盐,她情况良好。
diamox是一种专门作用于碳酸酐酶的酶抑制剂,该酶是催化涉及二氧化碳和碳酸脱水的可逆反应的酶。在眼中,这种乙酰唑胺的抑制作用降低了水性幽默的分泌,并导致眼内压的下降,这种反应在青光眼甚至在某些nonglaucomat条件下被认为是可取的。证据似乎表明Diamox在治疗中枢神经系统功能障碍(例如癫痫病)方面具有效用。抑制该区域的碳酸酐酶似乎会阻碍异常,阵发性,中枢神经系统神经元的过量排出。 Diamox的利尿作用是由于其在肾脏对涉及二氧化碳和碳酸脱水的可逆反应的作用。 结果是HCO 3离子的肾脏损失,该离子造成钠,水和钾。 尿液的碱化和利尿作用的促进受到影响。 氨代谢的改变是由于肾小管因尿液碱化而导致氨气吸收氨的吸收。抑制该区域的碳酸酐酶似乎会阻碍异常,阵发性,中枢神经系统神经元的过量排出。Diamox的利尿作用是由于其在肾脏对涉及二氧化碳和碳酸脱水的可逆反应的作用。结果是HCO 3离子的肾脏损失,该离子造成钠,水和钾。尿液的碱化和利尿作用的促进受到影响。氨代谢的改变是由于肾小管因尿液碱化而导致氨气吸收氨的吸收。
作为1,2,4-苯甲二嗪-1,1-二氧化物的衍生物,噻嗪类药物更准确地分类为苯甲二氮嗪。在不同化合物之间存在取代和杂环环的变化,但它们都共享一个未取代的磺酰胺基,类似于碳酸酐酶抑制剂。尽管它们保留了抑制碳酸酐酶的能力,但其利尿作用并不仅仅依赖于这种活性。在生理pH时,噻嗪类充当有机阴离子,由于其高蛋白结合和有限的肾小球过滤,因此必须通过肾脏有机阴离子转运蛋白通过肾脏有机阴离子转运蛋白进行主动分泌。尿酸与噻嗪类药物竞争为近端小管的分泌,可能导致高尿酸血症并引发易感个体的痛风。
这项研究介绍了掺入BIS(磷酸)部分的新友好和IMID衍生物的合成和光谱表征。关键的起始材料,[(4-氨基苯基)(羟基)亚甲基]双(磷酸)(1),与各种环状酸酐 - 核酸 - 核酸核,1,8-萘甲虫,3-硝基嗜硫酸盐,3-硝基噬菌学,腹膜腹膜,Cis -1,1,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6 triian and andride and properride(and)反应。 ) - 产生相应的氨基酸(3A - 3F和5G)。随后在反流下无水乙酸钠的存在下使用乙酸酸酐脱水,产生了新型的酰亚胺衍生物(4A - 4F和6G)。通过各种物理和光谱技术来表征合成的化合物,包括傅立叶转换红外光谱(FT-IR),核磁共振光谱(1 H,13 C和31 P NMR)。