海洋溶解有机磷 (DOP) 库主要由 P 酯组成,此外还有同样丰富的膦酸盐和 P 酐分子(数量较少)。在磷酸盐有限的海洋区域,固氮菌被认为依赖 DOP 化合物作为磷 (P) 的替代来源。虽然 P 酯和膦酸盐都能有效促进氮 (N 2 ) 固定,但 P 酐对固氮菌的作用尚不清楚。在这里,我们探讨了 P 酐对两个生物地球化学条件形成鲜明对比的站点的 N 2 固定的影响:一个位于汤加海沟火山弧地区(“火山”,磷酸盐含量低、铁浓度高),另一个位于南太平洋环流(“环流”,磷酸盐含量中等、铁含量低)。我们用 AMP(P 酯)、ATP(P 酯和 P 酐)或 3polyP(P 酐)培养表层海水,并确定了 Crocosphaera 和 Trichodesmium 中细胞特定的 N 2 固定率、nifH 基因丰度和转录。Trichodesmium 对添加的任何 DOP 化合物均无反应,这表明它们在火山站不受 P 限制,并且在环流站被低铁条件击败。相反,Crocosphaera 在两个站都数量众多,它们的特定 N 2 固定率在火山站受到 AMP 的刺激,在两个站受到 3polyP 的轻微刺激。尽管磷酸盐和铁的可用性形成对比,但两个站的异养细菌对 ATP 和 3polyP 添加的反应相似。 Crocosphaera 和异养细菌在低磷酸盐浓度和中等磷酸盐浓度下使用 3polyP 表明,这种化合物除了是 P 的来源外,还可用于获取两个群体竞争的能量。因此,P-酸酐可能会在未来分层和营养贫乏的海洋中利用能量限制来限制固氮菌。
通过使用基因组编辑和稳定植物转化技术,开发将高粱基因与表型联系起来的基因组水平知识库以实现生物能源目标,对于理解基本生理功能和作物改良至关重要。我们与参与该项目的各个实验室一起贡献中央枢纽能力,以创建、测试和培育转基因和基因组编辑植物。我们已经建立了可靠的协议,用于通过农杆菌介导将实验性遗传构建体引入高粱 cv BTx430,并合作生成该项目正在进行的研究所需的可行转基因。这些实验包括:; (1) 用于敲低的高粱 RNAi 构建体,例如电压门控氯离子通道蛋白、α碳酸酐酶 7 (CA) 和 9-顺式环氧胡萝卜素双加氧酶 4 以及 myb 结构域蛋白 60; (2) 构建体用于测试磷酸烯醇丙酮酸羧化酶 (PEPC) 启动子表达、CA 过表达和具有改变动力学的 PEPC 的保真度;(3) 旨在测试一系列增加的叶肉 CA 活性的 CA 过表达的其他版本;(4) Ta Cas 9、dTa Cas9 和 dCas9 转录激活因子用于改进编辑,以及;(5) 构建体用于评估转基因过程的改进,旨在增加转化频率并缩短 T1 种子的时间。这些品系目前处于转基因过程的不同阶段。使用形态发生调节剂介导的转化 (MRMT) 的最新发展是实现快速转化和基因组编辑的突破。我们报告了一种使用 MMRT 技术的改进的快速转化方法的开发,该方法有可能增加我们的项目的吞吐量并缩短时间。与 Voytas 实验室合作,我们评估了 MRMT 载体的公共版本。 Voytas 实验室还在测试递送基因组编辑试剂的新方法,特别是使用 RNA 病毒载体通过感染递送 gRNA。通过感染进行可遗传基因编辑已在多个双子叶植物中实现,我们正在努力在狗尾草和高粱中实施该技术。
摘要:本研究的目的是检查50/50聚丙烯/聚酰胺6(IPP/PA6)系统在密封流条件下模制的系统,无论是在其原始状态下还是被两种不同的界面剂修饰之后。这项研究提供了两个主要见解。首先,它集中在接近相位反转的聚合物混合物上。其次,它研究了使用两种不同类型的界面剂(源自聚合物废物)来增强IPP和PA6之间的兼容性的影响。动态机械分析(DMA)已被用来实现这些目标。重要的是要注意,对50/50 IPP/PA6系统的研究是先前研究中预测的至关重要的重点,在此研究中,使用Box -Wilson设计(DID)在IPP/PA6二进制系统上的整个组合范围内评估了一系列的机械性能。因此,两个界面修饰符,即琥珀酸酐(SA)植物的无动物多丙烯与末端,侧面和桥接SA移植物(App-SASA)和琥珀酰 - 氟氟氟众类(SF)和桥梁琥珀酸氨基苯甲酸(SF),琥珀酸琥珀酸无水无水疗法植物植入了actactic atactic atactic Polopropopopopopopopopopopopopopopopopomylene(App-Sfsa),已使用。作者获得并表征了这些药物。在作者进行的先前研究中,混合物中使用的这些试剂的数量被确定为关键坐标。选择的加工方法(在限制条件下的压缩成型)被选择以最大程度地减少对新兴形态的任何方向效应。所有特征过程均在通过轮廓加工处理的样品上执行,以保留混合形态从加工阶段出现。蜡和萨克斯同步器测试的结果得出结论,在整个组成范围内,在混合物中,IPP或PA6的晶体形态没有变化。这些发现,并且长期适合我们正在讨论的五十/五十个混合物的PP晶相,将支持当前的DMA研究。最后,即使在这种不利的情况下,这些界面修饰符的效率也得出了结论。
杂环化合物在合成和天然化学空间中普遍存在,是各种应用的基本骨架(Reymond,2015)。杂环化合物意义重大,因为它们对人类、植物和动物至关重要(Katritzky 等人,2010)。在广泛的中小型杂环化合物中,嘧啶核构成了一组重要的药理活性化合物(Das 等人,2022)。该核心的重要性得到了充分的支持,因为它是核碱基(胞嘧啶、胸腺嘧啶、尿嘧啶)以及许多临床批准药物的片段。例如,嘧啶核存在于 5-氟尿嘧啶、伊马替尼(抗癌药)、利匹韦林(抗病毒药)、艾克拉普林(抗生素)、甲氧苄啶(抗菌药)和许多其他药物中(Nammalwar and Bunce,2024 年)。此外,它能够充当生物电子等排体(用于芳香核)并通过非共价相互作用 (NCI) 与生物靶标相互作用,使其成为药物发现计划的绝佳候选者(Nammalwar and Bunce,2024 年)。大量研究表明,嘧啶是开发针对慢性和传染病的药物的有希望的支架(Nadar and Khan,2022 年)。近年来,已鉴定出几种具有抗原虫(Rahman 等人,2024;Singh 等人,2024)、抗炎(Fatima 等人,2023)、抗神经炎症(Manzoor 等人,2023)和碳酸酐酶抑制(Manzoor 等人,2021a)活性的 4,6-二取代嘧啶。一个多世纪前就有报道,阿尔茨海默病 (AD) 现已成为痴呆症最普遍的原因,全球已报告数百万例病例。这导致了巨大的经济和人力负担(Bell,2023;Gustavsson 等人,2023)。到 2050 年,患有 AD 和其他痴呆症的人数估计将超过 1.52 亿(Nichols 等人,2022 年)。为了对抗这种使人衰弱的疾病,研究人员正在采用各种方法,其中一种方法是开发针对一种或多种 AD 机制(例如 β-淀粉样斑块、神经纤维缠结)的小分子(Takahashi 等人,2017 年)。在迄今为止鉴定出的不同类别的小分子中,基于嘧啶的化合物成为一种有希望的候选化合物(Singh 等人,2021 年;Das 等人,2022 年)。例如,Nain 及其同事(Pant 等人,2024 年)报道了一系列取代的
摘要:已发现果皮含有多种生物活性化合物,可用于草药治疗多种疾病。尚未研究 C. rostrata 果皮中存在的植物化学物质及其与人体蛋白质结合并改变其功能的潜力。因此,本研究确定了 C. rostrata 果皮提取物中类药物成分在人体中的主要蛋白质靶点以及与这些靶点相关的疾病状况。通过 GCMS 分析确定了 C. rostrata 果皮无水乙醇提取物的甲醇和正己烷馏分成分的身份。使用 SwissADME 和 SwissTargetPrediction 网络工具确定类药性(符合 Lipinski、Ghose、Veber、Egan 和 Muegge 过滤器)和类药物成分的蛋白质靶点。GCMS 分析显示正己烷和甲醇馏分中存在 49 种化合物。育亨宾衍生物 Corynan-16-羧酸,16,17-二脱氢-9,17-二甲氧基-,甲酯,(16E)-,在甲醇馏分中含量丰富 (13.33%)。正己烷馏分富含奇数链脂肪酸和植物甾醇。在馏分中鉴定出四种类药物化合物:(1) 壬二酸单乙酯;(2) 3- (2-甲氧基甲氧基亚乙基)-2,2 二甲基双环[2.2.1]庚烷;(3) 环十二醇,1-氨基甲基-,和 (4) Corynan-16-羧酸,16,17-二脱氢-9,17-二甲氧基-,甲酯,(16E)-。预测的类药化合物的主要蛋白质靶点包括碳酸酐酶 II、蛋白酪氨酸磷酸酶 1B、鞘氨醇激酶 1、麦芽糖酶-葡糖淀粉酶、腺苷 A2b 受体、P2X 嘌呤受体 7、MAP 激酶 p38 α、δ-阿片受体和 α-2 肾上腺素受体。研究结果表明,C. rostrata 外果皮含有类药植物化学物质,具有抗癌、糖尿病、疼痛和炎症疾病的潜力,提取物可能具有壮阳潜力。 DOI:https://dx.doi.org/10.4314/jasem.v26i5.18 开放获取文章:(https://pkp.sfu.ca/ojs/)这是一篇根据知识共享署名许可 (CCL) 分发的开放获取文章,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当引用。 影响因子:http://sjifactor.com/passport.php?id=21082 谷歌分析:https://www.ajol.info/stats/bdf07303d34706088ffffbc8a92c9c1491b12470 版权:© 2022 Ajayi 等人 日期:收到:2022 年 3 月 25 日;修订:2022 年 4 月 13 日;接受:2022 年 5 月 11 日 关键词:Cola rostrata 外果皮;计算机识别;药物样成分;蛋白质靶标预测外果皮(果皮)是表皮层,它包围并保护下面的中果皮免受微生物感染和水渗透,同时确保与外界环境的气体交换(Hansmann & Combrink,2003)。许多热带水果的外果皮不能食用,每年都会造成大量植物材料浪费。最近的研究重点是将果皮从环境污染转化为财富,并利用其丰富的植物化学成分用于医疗保健目的(Torres-León 等人,2018 年;Veloso 等人,2020 年;Hikal 等人,2021 年;Osorio 等人,2021 年)。
Telix Pharmaceuticals Limited 及其国际运营子公司(“Telix”、“公司”)专注于诊断和治疗放射性药物的开发和商业化。靶向放射产品和候选产品通常由专科医生为患者施用,我们与全球领先的癌症中心密切合作,为患者护理带来积极影响。为此,我们进行临床试验以评估研究药物的安全性和有效性,如果得到证实,我们将获得监管机构的必要批准,为患者提供广泛使用这些药物的机会。通常,临床试验由公司赞助和控制,但在某些情况下,我们也允许经验丰富的医生进行研究者发起的试验。一般而言,Telix 认为,在获得监管部门批准和上市许可之前,参与临床试验是让患者接受未经许可和未经证实的药物治疗的最合适方式。在某些情况下,如果无法做到这一点,患有危及生命的疾病的患者可能会在正式临床试验环境之外,以同情用药的方式通过医生寻求获得研究药物的特殊途径。 Telix 针对肾癌、前列腺癌和胶质母细胞瘤的碳酸酐酶 IX (CAIX)、前列腺特异性膜抗原 (PSMA) 和 L 型氨基酸转运蛋白 (LAT) 靶向计划尤其如此。这些早期使用计划通常被称为同情用药,但也可以称为指定患者请求、官方处方、扩大使用、早期使用和紧急使用方案。典型的临床开发过程涉及对人体进行受控测试以确保安全性和有效性,并受到澳大利亚治疗用品管理局 (TGA) 或美国食品药品管理局 (FDA) 等监管机构的全面监督。由于在临床开发中无法完全了解研究药物是否安全或有效,因此同情用药可能会给患者和临床开发计划带来重大风险。对于患者而言,同情用药或早期/扩大使用可能会带来潜在的安全风险或使他们误以为该药物会带来益处;对于临床开发计划而言,这可能会延迟或破坏许多人寻求的新药的批准。进行临床试验既复杂又困难。最终目标是对临床产品进行严格测试,以确保获得监管部门的批准,并使药物能够尽快提供给尽可能多的患者。 Telix 有道德责任确保临床试验的质量和完整性,并将当前研究参与者和未来患者的风险降至最低。Telix 还对我们研究药物的同情使用或早期/扩大使用负有道德责任。在考虑研究药物的同情使用或早期/扩大使用请求时,我们会考虑许多因素,例如严格获得的临床数据支持的安全性和有效性水平、患者的风险收益状况、对临床开发计划的潜在影响、开发阶段、提出请求的医疗团队在放射性药物方面的经验以及获得监管部门批准的可能性和时间。此外,由于我们正在开发放射性药物,因此存在重大的生产和物流挑战,可能会限制研究药物的地理可用性,无论同情使用或早期/扩大使用可用性的优点如何。在 Telix,只有满足以下所有条件,才会考虑同情使用或早期/扩大使用计划,或单个研究药物的同情使用请求: